
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Implementation of Energy Saving Mechanism for
multi core Architecture in Cloud Computing

Kinnari Solanki1, Prof. Tushar A. Champaneria2

1Department of Information Technology, L. D. College of Engineering, Gujarat Technological University,
Ahmedabad, India

2Assistant Professor, L. D. College of Engineering, Gujarat Technological University, Ahmedabad, India

Abstract: Cloud computing denotes to Application and Services that run on a Distributed network using virtualized resources and
accessed by Internet protocols and networking standards. Cloud computing makes dreams of utility computing with a pay-as-you-go,
cloud is scalable, universally available system. The fast growing demand for computational power utilized by modern applications with
rapidly changing Cloud computing technology has directed to the foundation of large-scale virtualized data centers. In order to integrate
the system resource, utilize the resource flexibly, save the energy consumption, and meet the requirements of users in the cloud
computing environment. From load balancing algorithm we can get dynamic queue of available server with their maximum free
memory and response time. So in this research work we can allocate best server for upcoming request and stop that server which
infrequently used. So we can stop unused server and this way we can try to save energy.

Keywords: Cloud computing, Virtualization, Load Balancing

1. Introduction

Modern resource-intensive enterprise and scientific
applications create growing demand for high performance
computing infrastructures. This has led to the construction of
large-scale computing data centers consuming enormous
amounts of electrical power. Despite of the improvements in
energy efficiency of the hardware, overall energy
consumption continues to grow due to increasing
requirements for computing resources. For example, in 2006
the cost of energy consumption by IT infrastructures in US
was estimated as 4.5 billion dollars and it is likely to double
by 2011 [1]. Apart from the overwhelming an operational
cost, building a data center leads to excessive establishment
expenses as data centres are usually built to serve infrequent
peak loads resulting in low average utilization of the
resources. Moreover, there are other crucial problems that
arise from high power consumption. Insufficient or
malfunctioning cooling system can lead to overheating of
the resources reducing system reliability and devices
lifetime. In addition, high power consumption by the
infrastructure leads to substantial carbon dioxide (CO2)
emissions contributing to the greenhouse effect.

A number of practices can be applied to achieve energy
efficiency, such as improvement of applications’ algorithms,
energy efficient hardware, Dynamic Voltage and Frequency
Scaling (DVFS) [2], terminal servers and thin clients, and
virtualization of computer resources [3]. Virtualization
technology allows one to create several Virtual Machines
(VMs) on a physical server and, therefore, reduces amount
of hardware in use and improves the utilization of resources.
Among the benefits of virtualization are improved fault and
performance isolation between applications sharing the same
0resource (a VM is viewed as a dedicated resource to the
customer); the ability to relatively easy move VMs from one
physical host to another using live or off-line migration; and
support for hardware and software heterogeneity. Cloud
computing naturally leads to energy-efficiency by providing
the following characteristics:

 Economy of scale due to elimination of redundancies.
 Improved utilization of the resources.
 Location independence – VMs can be moved to a place

where energy is cheaper.
 Scaling up and down – resource usage can be adjusted to

current requirements.
 Efficient resource management by the Cloud provider

The energy consumption is not only determined by the
efficiency of the physical resources, but it is also dependent
on the resource management system deployed in the
infrastructure and efficiency of applications running in the
system. This interconnection of the energy consumption and
different levels of computing systems can be seen from
Figure 1.

Figure 1: Energy consumption at different levels in
computing systems.

Paper ID: 020131848 628

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

2. Static and Dynamic Power Consumption

Multi-core consideration
 P-State (Performance State)

No of P-state is processor specific. Higher P- state
number represents slower processor speed.

 C-State (CPU Operating State)
Higher the c-state number the deeper the CPU sleep
mode. More components are shut down to save power.
C0 – CPU fully turned on.
C1 – First Idle State, Stops CPU main internal clock via
software.
C2 – Stop CPU main internal Clocks via hardware.

3. Proposed Algorithm

The pseudo code of the algorithm is as under
Pseudo Code
Step-1: [Calculate load factor x]

 X<- (Total_Resourses – Used_ Resources)
 //where x is free memory in terms of percentage.
Step-2: [Calculate Performance Factory]:
 Y1<- average(current_response_time)
 Y <- Y1 – (previously calculated Y1)
 Y <- Y1(previous Y1) * 100
 //counting Y in terms of previously counted Y.
Step-3: [finding Z]
 Z <- X – Y
 If(Z < 0)
 Z=0
Step-4: [find minimum of all Z except the nodes with Z
value 0]
 Min_Z = min(all Z’s)
Step-5: [find min_factor and divide all Z by the factor]
 Min_factor <- Min_Z
 Z <- Z(Min_factor)
Step-6: [Generate Dynamic queue on base of Z]
Step-7:[check number of request per second]
Step-8:[find the probability of Z]
Step-9: [stop the infrequently used server]
Step-10: [Start the server]
 if number of request increases then start the server
dynamically or based on probability of Z
End
In the above algorithm x is considered as a free load on
server, y for the performance on the server and y1 is the
current response time.

4. Explanation

Step-1:
The value of x is calculated by considering the total
available resources and allocated resources on the server.
The available resources would be calculated using the
equation x = (Total _Resources – Used _Resources). Once x
value is calculated for all nodes servers we get the available
free load on the servers.

Step 2:
Here the performance factor calculates the increase or
decrease in performance on the server and the calculated
value is stored y. Now for calculating y a request is send to

all the nodes at regular interval of time and the response
time(total of both request time + response time) is
calculated. So every hour sever would have various values
of y and averaging all the value of y1 would be calculated to
generate a queue. Now, the previously calculated y1 will be
deducted from current values y1 which was currently used to
calculate the performance (i.e. Response time increases or
decreases). The same way the increased or decreased
performance is calculated and the value of y is calculated as
the percentage of previously counted y1. That is y/(previous
y1)*100.

Step 3:
Counting z = x - y; Here Y value is subtracted from x value
to count the z value Here we are interested in the node with
the lowest response time hence we subtract the y value from
x. i.e. nodes having more response time will contain less z
value and they will
get less number of requests to handle. Now suppose in the
worst case node have very less memory available and very
large response time than z = x – y may get negative value so
we need to remove that node from queue (think that it is
temporary unavailable) and it will not consider in any step of
the algorithm and in this iteration of algorithm it will not get
any request to handle. If any node is temporarily unavailable
the response time will be infinite (or very large) of that
specific node. So the y value also becomes too much large
for that node which will leads to minus z value. And in step
4 of algorithm that node will discarded for future process in
this irritation of algorithm. So with this step we can also
detect the unavailable node (with value of y as infinite or to
large).

Step 4:
Once the z is calculated then the minimum of all z which we
calculated are stored in min _z. Here we will not consider
node with 0 z value so, this node will be remove from any
further process and for this iteration of the algorithm. In the
next iteration of the algorithm the z value of node will count
again so it will get the next chance to join cloud
environment if it is ready for it i.e. available.

Step 5:
Here minimum factor is calculated and divided by all the
factors of z. Suppose z values for node 1 to 5 are given
below:
Node z-value
N1 22.30
N2 12.23
N3 43.00
N4 14.36
N5 28.29
Now N2 has a list z value and so every nodes z value are
divided by N2’s z value and stores a float or cell value of it
to make it easy and less complex. So now the z values are 2,
1, 4, 1, and 2. Node with z value 0 will get 0 as z / min_fact
so they can’t get any request to handle.

Step 6:
From the above value N1 has the capacity to handle two
requests, node N2 can handle only one while N3 will handle
4 to keep load balanced on each node. So the temporary
queue will look be prepared as follows:

Paper ID: 020131848 629

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

N3 N3 N3 N3 N1 N1N5 N5 N4 N2
Figure 2: Dynamic Queue

So, once the temporary queue and permanent queue will be
changed and accordingly, first 4 requests will go to node 3
than 2 will go to n1 and so on until the end of queue. Once
the queue is over it will assign next 4 to N3 and so on.

Step 7:
Now we check the number of request on server.

Step 8:
Find the probability of z factor means how many time the
particular server is fulfil the user request. And find how
many server are ideal bashed on this z.

Step 9:
As we discuss in step 8 we have list of ideal server so now
we stop the ideal server.

Step 10:
If number of request are increased then start the server
dynamically.

5. Experimental Result

Here we use server with 2 GHz Processor, 20 GB HDD and
1 GB RAM. If we take 5 server and per server it will handle
1000 user request. First when 1000 request arrives at that
time all 5 server are working and power consumption
increase.

Table 1: without applying any algorithm
user

Request
Total
Server

In use
Server Imp_cpu Imp_eng sml_cpu sml_eng

1000 5 1 0.601 62.1 1.821 910.5
2000 5 2 0.816 167.2 1.836 918
3000 5 2 1.803 546.9 2.423 1211.5
4000 5 3 2.404 969.6 2.724 1362

As shown in table 1 when any number of user request
arrives all server are working so power consumption is
increased bashed on following energy consumption formula:

Power Consumption = [(CPU + MEM_OPERATION) *
100] * Number of used server

So after applying over proposed algorithm we can got the
result as shown in table 2. Because each server handle 1000
user request so no need to use all server just start the server
as per user request other server are stoped at that time and
this way we can save the energy. Following graph shows the
comparison of energy consumption with applying algorithm
and without applying algorithm.

Figure 2: Energy Consumption Comparison

6. Conclusion

This Paper Proposed Dynamic available server queue
generated with Energy Saving Mechanism in the cloud
computing environment to reduce the energy consumption.
By applying the proposed algorithm we can stop ideal server
and this way we can save energy.The experimental result
shows that the energy consumption can be saved by
applying the proposed algorithm then without applying
algorithm because when we not apply algorithm at that time
all servers are running and its waste energy.

References

[1] R. Brown et al., “Report to congress on server and data
center energy efficiency: Public law 109-431,”
Lawrence Berkeley National Laboratory, 2008.

[2] G. Semeraro, G. Magklis, R. Balasubramonian, D. H.
Albonesi, S. Dwarkadas, and M. L. Scott, “Energy-
efficient processor design using multiple clock domains
with dynamic voltage and frequency scaling,” in
Proceedings of the 8th International Symposium on
High-Performance Computer Architecture, 2002, pp.
29–42.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” in Proceedings of the 19th
ACM symposium on Operating systems principles,
2003, p. 177.

[4] A Taxonomy and Survey of Energy-Efficient Data
Centers and Cloud Computing Systems Anton
Beloglazov1, Rajkumar Buyya1, Young Choon Lee2,
and Albert Zomaya2 .

[5] N. Rodrigo, Calheiros, R. Ranjan, A. Beloglazov, C. A.
F. D. Rose and R. Buyya, “CloudSim: A Toolkit for
Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource Provisioning
Algorithms”, ISSN:0038-0644, Wiley Press, New York,
USA (2011), pp. 23-50.

[6] Ratan Mishra1 and Anant Jaiswal,"Ant colony
Optimization: A Solution of Load balancing in
Cloud",International Journal of Web & Semantic
Technology (IJWesT) Vol.3, No.2, April 2012

[7] Liang-Teh Lee, Kang-Yuan Liu, Hui-Yang Huang and
Chia-Ying Tseng ,” A Dynamic Resource Management
with Energy Saving Mechanism for Supporting Cloud

Paper ID: 020131848 630

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Computing”, International Journal of Grid and
Distributed Computing Vol. 6, No. 1, February, 2013

[8] G. Praveen, “Analysis of Performance in the Virtual
Machines Environment”, International Journal of
Advanced Science and Technology (IJAST), vol. 32,
SERSC, (2011), pp. 53-64.

[9] Pragati Priyadarshinee, Pragya Jain,"Load Balancing
and Parallelism in Cloud Computing",International
Journal of Engineering and Advanced Technology
(IJEAT) Volume-1, Issue-5, June 2012

Paper ID: 020131848 631

