
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Efficient Virtual Pre-emption based on Local and
External Requests in Cloud Computing

Dhara J.Patel1, Bakul Panchal2

1Computer Department, LD College of Engineering, Gujarat Technological University

2Assistant Professor, Computer Department, LD College of Engineering, Gujarat Technological University

Abstract: Resource provisioning is one of the main challenges in large-scale resource sharing environments such as federated Grids.
In resource sharing environments resource providers serve requests from external users along with their own local users. The problem
arises when there is not sufficient resources for local users, who have higher priority than external ones, and need resources urgently.
This problem could be solved by pre-empting leases from external users and allocating them to the local ones. However, pre-empting
leases entails side-effects in terms of overhead time as well as increasing makespan of external requests. In our proposed work, we
model the overhead of the pre-empting vms and calculate the number of leases to be pre-empted by proposing an efficient algorithm that
considers various scenarios based on the type of the local and external requests and selects the appropriate request to be pre-empted in a
manner that the more local requests are served and also reduces the rejection ratio of highly prioritized Requests.Thereby , providing
efficient resource provisioning by providing prioritized queues one for each type of request.

Keywords: Cloud computing, Pre-emption, Local Request, External Request, Cloudsim

1. Introduction

Managing and providing computational resources for user
applications is called as resource provisioning. It is one of the
challenges in the high performance computing community.
Resource sharing environments enable sharing, selection, and
Update aggregation of resources across several Resource
Providers (RP), also known as sites that are connected
through high bandwidth network connections. In a resource
sharing environment computational resources in each RP are
shared between external users as well as local users of the RP.
Recently, Virtual Machine (VM) technology has been
employed for resource provisioning in many resource sharing
environments [1-3].

Resource provisioning and sharing is based on the lease
abstraction. A lease is an agreement between a resource
provider and a resource consumer whereby the provider
agrees to allocate resources to the consumer according to the
lease terms presented by the consumer [3]. Virtual machine
technology has been used to implement lease-based resource
provisioning [3]. The capabilities of VMs in getting
suspended, resumed, stopped, or even migrated (when there
is enough bandwidth) have been extensively studied and have
shown to be useful in resource provisioning without major
utilization loss. It makes one lease for each user VM request.
In resource sharing environments resource providers serve
requests from external users along with their own local users.
The problem arises when there is not sufficient resources for
local users, who have higher priority than external ones, and
need resources urgently.

This problem could be solved by pre-empting leases from
external users and allocating them to the local ones.
However, pre-empting leases entails side-effects in terms of
overhead time as well as increasing make span of external
requests.

2. Related Work
In this context we have discussed some related work, which
introduces and analyzes various Lease Pre-emption algorithms
based on various parameters.

a) Sotomayer et al[3]
The overhead time imposed for suspending and resuming
a VM-based lease is estimated. The proposed model is
based on the amount of memory that should be de-
allocated. Nevertheless, they have not considered
situation where there is communication between VMs of a
lease.

b) Haizea[4]
Haizea operates based on the duration of the pre-emptable
leases. In other words, it pre-empts leases that require
more time to be completed. It cannot determine the
optimal candidate set for pre-emption without any prior
knowledge or any assumption about leases’ durations.

c) Walters et al[2]
Its policy of weighted summation of several factors such
as the time spent in the queue

d) Snell et al[5]
They do not emphasize more on VM based leases. They
concentrate on the impact of pre-emption on
current .requests but not advance- reservation requests
waiting in the queue. Also they kill pre-empted requests
to make the overhead zero but computational power is
wasted in that case.

3. Existing Pre-Emption Policies

 In this paper various Pre-emption policies are analyzed and
explained. In which different policies use different
parameters for the basis of their algorithm. One algorithm
uses minimum number of lease as a parameter, other uses
minimum overhead as a criteria another uses both. They are
compared for knowing advantages and disadvantages of them

Paper ID: 020131824 651

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Parameters/
Algorithm

Technique Advantages Limitations

Minimum
Overhead

Policy(MOV)[6]

Based on
Minimum time

Overhead

Maximum
resource

utilization

More Resource
contention and
optimal set of
leases is not

obtained
Minimum

Leases Involved
Policy(MOV)[6]

Based on
Minimum
number of

leases

Minimum
Resource

contention and
optimal set of

leases is
obtained

Maximum
resource

utilization is not
obtained

Minimum
Overhead
Minimum

Leases
Policy(MOML)

[6]

Based on both
Minimum time
Overhead and

Minimum
number of

leases

Maximum
resource

utilization and
Minimum
Resource
contention

Does not
consider inter-

dependable
leases and

cancellable ,
suspendable,

migratable types
of local requests

4. Problems with Existing System

Many improvements to Pre-emption algorithm are done so far.
But ,We require an efficient provisioning algorithm that
calculates the minimum time overhead to increase the
resource utilization and finds out the optimal set of leases to
minimize contention of resources. The existing MOML
algorithm provides a trade - off between resource utilization
and minimum resource contention. However along with
increasing the ratio of local requests being served we need to
also focus on minimizing the external rejection ratio. The
present algorithm considers only one type of local request
deadline-constraint non – preemptable. But practically, local
request can be of other types as cancellable, migratable etc.
Killing of external requests to minimize the makespan or
starving situation means wastage of computational power.

5. Proposed System

The proposed algorithm works on all four types of local
requests and external requests i.e cancellable, suspendable,
migratable, and non- migratable . It takes into account both
the type of requests before finding an optimal situation for
the pre-emption. In our work, we consider various scenarios
on the basis of both the local request as well as external
request and analyse which request to be pre-empted by
allocating priority to each request and comparing the
priorities to determine the low – priority request to be pre-
empted. The proposed algorithm is more intelligent and
scenario based i.e. selects an optimal solution based on
different scenarios and different types of request

In this work, instead of using a single queue for waiting
external requests we maintain separate prioritized queues,
one for each type of waiting external requests and for each
type of local waiting local requests. Even though the local
request queue gets a higher priority every time a resource is
free for utilization, it does provide efficient solution to
starvation problem of external requests by applying them to
priority based scheduling. Also by maintaining fixed length
queues and transferring priority to the queue that is full, we
prevent monopolizing resources.

Eight separate queues are created one for each type of
requests and given a priority as shown below(1 being the
highest and 8 being the lowest).

Priority Priority Queue
1 Local Non-Migratable
2 Local Migratable
3 External Non-Migratable
4 External Migratable
5 Local Suspendable
6 Local Cancellable
7 External Suspendable
8 External Cancellable

6. Proposed Algorithm

Input: Local Request/ External Request
Output: Request to be pre-empted and added to the queue

Step1: Check the priority of the incoming Request based on
its request type.
Step2: Check the priority of the executing Request. .(In case
of no executing request assign i.e. the Vm being idle, skip
step 2-6).
Step3: Compare the priority of the Incoming Request and the
Executing Request.
Step4: Pre-empt the request with lower priority and add the
request to the respective queue.
Step5: If the queue is full, the lower priority request is not
pre-empted but keeps on executing and the higher priority
request is added to the queue.
Step6: Calculate number of leases per Vm.
Step7: Assign the higher priority request to the Vm with the
minimum number of leases.

7. Experimental Results

In this section we provide the detailed results of the
experiments carried out using the proposed framework..The
following experimental analysis is carriedout using
CloudSim. Before execution the requests arrive at a
respective Vm randomly, the priorities are assigned from the
type of given requestand assigned to its respective queue as
shown below leases are calculated by no of requests
executing on single Vm.

Cid Sid P Did n L/E Request Type
1 5 1 5 1 L Non-Migratable
2 5 7 4 1 E Migratable
3 1 3 3 1 E Non-Migratable
4 3 6 4 2 E Cancellable
5 3 8 3 2 L Cancellable

Where, Cid – cloudlet id,
 Sid – sourceVmid,
 Did - DestinationVmid,
 P - Priority,
 n – no of leases
 L – Local Request
 E – External Request

The cloudlets are executed based on the priority assigned to
each Request. In table below, as we can see the order of
execution differs from the order in which requests arrive.The

Paper ID: 020131824 652

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

cloudlet- 2 is executed first and cloudlet-4 is executed later
on Vm- 4, as cloudlet- 2 is an External Migratable type of
Request and has higher priority while Cloudlet-4 is External
cancellable type of Request

Cid Sid P Did n L/E Request Types
 1 5 1 5 1 L Non-Migratable
3 1 3 3 1 E Non- Migratable
2 5 7 4 1 E Migratable
5 3 8 3 2 L Cancellable
4 3 6 4 2 E Cancellable

8. Conclusion

After understanding various Pre-emption algorithms, we
understood that algorithms consider only one type of external
request, i.e. deadline – constraint non- migratable. But we
need to consider other types of local requests i.e suspendable,
cancellable, migratable for a more practical and intelligent
approach. Also the introduction of 8 separate priority based
queues simplifies the scheduling process. Also
monopolization of resources is prevented by creating fixed
length queues. So we have performed experimental analysis
on various scenarios regarding different types of local and
external request and reach to the conclusion that provides
more intelligent resource utilization and minimum resource
contention efficiently.

References

[1] F. Hermenier, A. L`ebre, J. Menaud, Cluster-wide
context switch of virtualized jobs, in: Proceedings of the
19thACM International Symposium on High
Performance Distributed Computing (HPDC ’10), USA,
2010.

[2] J. Walters, B. Bantwal, V. Chaudhary, Enabling
interactive jobs in virtualized data centers, Cloud
Computing and Applications 1 (2008) 21–26.

[3] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster,
Resource leasing and the art of suspending virtual
machines, in: Proceedings of the 11th IEEE
International Conference on High Performance
Computing and Communications,USA, 2009

[4] B. Sotomayor, K. Keahey, I. Foster, Combining batch
execution and leasing using virtual machines, in:
Proceedings of the 17th International Symposium on
High Performance Distributed Computing, ACM, USA,
2008.

[5] Q. Snell, M. J. Clement, D. B. Jackson, Preemption
based backfill, in: Job Scheduling Strategies for Parallel
Processing (JSSPP ’02), Springer, 2002.

[6] Rajkumar Buyya, Mohsen Amini Salehi, Bahman
Javadi, Concurrency and Computation: Practice and
Experience,ISSN: 1532-0626, Wiley Press, New York,
USA (in press, accepted on Jan. 5, 2013).

[7] M. Amini Salehi, B. Javadi, R. Buyya, Resource
provisioning based on leases preemption in InterGrid, in:
Proceeding of the 34th Australasian Computer Science
Conference (ACSC’11), Australia, 2011

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.
Stoica, M. Zaharia, A view of cloud computing,
Communications of the ACM 53 (4) (2010) .

[9] B. Sharma, R. K. Thulasiram, P. Thulasiraman, S. K.
Garg, R. Buyya, Pricing cloud compute commodities: A
novel financial economic model, in: Proceedings of the
12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGRID ’12, IEEE
Computer Society, 2012.

Paper ID: 020131824 653

