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Abstract:  Four mortality models: Gompertz, Makeham, Logistic and Coale - Kisker models have been considered for a comparative 
study of Old- Age Mortality for both male and female based on reliable data of ten countries. Sufficiently long run of reliable data 
selecting from ten countries:  Australia,  Hong Kong,  Canada,  England,  Israel,  Japan,  New Zealand,  Poland,  Singapore,  United 
Kingdom have been used  for this investigation. The main objective of this paper is to select the best fit mortality model from ages 85 
onwards. Using the complete life table of ten different countries as input, the parameters of these mortality models have been estimated 
using Levenberg – Marquardt iteration procedure. The estimated parameters of these models have been used for the testing the validity 
of the models which could be used for the projection of mortality rates at ages. Matlab version 7.11.0 has been used for the estimation of 
the parameters. It is observed from our result that among the four models the four parameter logistic model and three parameter Coale - 
Kisker give satisfactory results as the expected values are found to be very closed to observed data. The Gompertz model seems to be not 
suitable for prediction of old age mortality.  
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1. Introduction  
 
Mortality modeling is an old subject. Mortality modelling is 
one of the traditional and fundamental demographic issues. 
The purpose of the mortality modelling is to find relations 
and hidden regularities and patterns in the mortality 
development. Knowledge of these patterns could be used 
among others for the forecasting of the future development 
of mortality. Many attempts have been made to find 
mathematical formulae that will summarise the way in which 
the probability of dying depends on age. Such formulae have 
many potential applications. For example, they may be 
useful in the projection of population numbers and as aids in 
actuarial work such as the construction of life tables. The 
first explanatory model, and the most influential parametric 
mortality modelling, is that proposed by Benjamin Gompertz 
[3]. He recognised that an exponential pattern in age 
captured the behaviour of human mortality for large portions 
of the life table [6]. The function for such survivorship 
curves, which is named after Gompertz, is described by the 
well-known Equation:  

�(�) = �� × ��� �− �
�

(��� − 1)�  (1) 
The exponential increase in the age-specific mortality rate 
that may be observed over time t in cohorts of different 
organisms (cohort analysis mostly used in experiments) or 
derived from survivorship curves described by Equation (1) 
(cross-sectional or period analysis mostly used in 
demography) is known as the Gompertz law and is described 
by Equations (2) or (3): 

− �
�(�)

× �
��

�(�) = �(�) = ����                       (2) 
ln �(�) = ln � + ��                           (3) 

Ever since Gompertz, many models have been suggested to 
mathematically describe survival and mortality curves [2], of 
which the Gompertz model and the Weibull [15]model are 
the most generally used at present [8, 9]. Interestingly, the 
Gompertz model is more commonly used to describe 
biological systems, whereas the Weibull model is more 
commonly applicable to technical devices [8, 9]. Makeham 
[13] suggested that a better fit to real survivorship curves 

might be achieved by introduction of an additive constant to 
Equation (2) thus leading to 

�(�) = ���� + �                                (4) 
 
The parameters of Equation (4) (and Equations (1)–(3) by 
inference) may be interpreted in biologically meaningful and 
intuitively comprehensible terms. The additive term c 
represents the rate of deaths resulting from causes that no 
organism can resist irrespective of its age, e.g., deaths caused 
by predators that do not discriminate prey ages or by 
infectious agents so virulent that the ages of their hosts make 
no difference. The other additive term is the product of the 
initial rate of deaths resulting from resistible stresses(�), 
which reflects frailty (the reciprocal of vitality) at �= 0, and 
the exponent of the parameter�, which reflects the rate of the 
decrease in vitality that occurs with increasing t, i.e., with 
aging.  
 
The early interpretations of the Gompertz law implied an 
autocatalytic nature of the age-dependent deterioration of 
biological functions resulting in an exponential decrease in 
the resistance to deadly stresses (vitality). However, the age 
dependent decline of most biological functions within the 
middle age span is close to linear. Thus, there emerged the 
issue of reconciling of the time trajectory of the vitality of 
organisms and the time trajectory of the rate of their deaths.  
Explanations of why the Gompertz-Makeham mortality law 
works usually relate the constant c to the risk of death from 
all causes that do not depend on age, whilst the term ����is 
related to the risk of death because of the deterioration of the 
body due to ageing processes. 
 
In more recent years other mathematical models have been 

suggested, in particular the logistic model,�� = � + ����

������ , 
suggested by Perks[14] and Beard [11]. Some models of 
mortality are purely descriptive. They give a simple formula 
which fits the data in a particular range of ages, but no 
reason why this should be so, and hence no guarantee that 
the formula will continue to apply in other circumstances. A 
descriptive model used by Coale and Kisker [1], �� =
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�������  in a limited range of ages. We shall describe this as 
the quadratic model. The paper by Doray[10] discussed that 
logistic type models for the force of mortality provide better 
fit to mortality data of people aged over 85 than Makeham’s 
models where the force of mortality increases exponentially 
with age. 
The following models namely Gompertz, Makeham, Logistic 
and Coale and Kisker models will be considered in our 
investigation for finding a suitable mortality model for oldest 
- old mortality rates. 
 
1.1 Models for force of mortality to be compared 
 
Gompertz’s Model 
The very first attempt to develop a parametric model of 
mortality was that of Gompertz [3]. Gompertz modelled the 
aging or senescent component of mortality with two 
parameters: a positive scale parameter � that � varies with 
level of mortality, and a positive shape parameter � that 
measures the rate of increase in mortality with age. The force 
of mortality in the Gompertz model is  

 �� = ����    (5) 
The paper Bongaarts[5] discussed that for many purposes the 
Gompertz model provides a satisfactory fit to adult mortality 
rates, but this model underestimate of actual mortality 
atyoungest adult ages (under 40) and overestimate at the 
oldest ages (over 80).  
 
Makeham model 
The earliest modification to the Gompertz model, proposed 
by Makeham [13], involves addition of a constant term, so 
that  

 �� = � + ����   (6) 
The new parameter �represents mortality resulting from 
causes, such as accidents or sexually transmitted diseases, 
unrelated to either maturation or senescence, which is the 
same for all ages. The paper Bongaarts[5] discussed that the 
Makeham model represents a clear improvement over the 
Gompertz model at younger ages, but it still overestimates 
mortality at the oldest ages. 
 
Logistic model: The logistic model is known under a variety 
of names. It was first discovered by Perks [14], who found 
empirically that the values of �� in a life table which he was 
examining could be fitted by a certain curve, which was in 
fact a logistic function (though he did not describe it as such 
at the time). Here we take the logistic function in the 
following form: 

�� = � + ����

������   (7) 
It is to be noted that the Makeham model (� = 0) is a 
special case of the logistic model.  When �is small, any 
theories which may explain why should follow a logistic 
function will also help to explain why the Makeham and 
Gompertz laws work so well over much of the age range. 
 
Coale and Kisker model (Quadratic model) 
The idea that ln(��) can be fitted by a quadratic function of 
over � a limited range of ages was used by Coale & Kisker 
[1] for the purpose of interpolating in the range of ages from 
85 to 110, between data up to age 85 and an assumed value 
at age 110. The relevant formula is  

�� = �������  (8) 
⟺  ln ��  = ln � + �� + �� ln � 

= � + �� + ���,where� < 0. 
This is also known as quadratic model. It is important to note 
that Coale and Kisker model could be used in a limited range 
of ages. Wilmoth[7] used the model for estimating ��at age 
110 from data which extended above age 85.   
 
2. Material and Methods 
 
The four mortality models i.e. Gompertz, Makeham, 
Logistic, Coale and Kisker model (Quadratic model) have 
been considered for this study. These nonlinear models can 
be written in the form as 

�� = �(��, �) + ��,   (9) 
� = 1,2, ⋯ , �, where � is the response variables, � is the 
independent variable, �is the vector of parameters ��to be 
estimated (��, ��, ⋯ , ��), �� is a random error term,� is the 
number of unknown parameters, and � is the number of 
observations[4].The estimators of��’s are found by 
minimizing the sum of squares residual(�����) function  

(�����)= ∑ ��� − �(��, �)���
���  (10) 

under the assumption that the  �� are normal and independent 
with mean zero and common variance ��. Since �� and �� 
are fixed observations, the sum of squares residual is a 
function of�. Least squares estimates of �are values which 
when substitutedinto equations (9) will make the(�����)  a 
minimum and are found by differentiating equations (10) 
with respect to each parameter and setting the result to zero. 
This provides the � normal equations that must be solved 
for��, where p denotes the number of unknown parameters. 
These normal equations take the form 

∑ ��� − �(��, �)� ���(��,�)
���

��
��� = 0(11) 

for� = 1,2, ⋯ , �.  
 
3. Results 
 
3.1 Estimation of Parameters 
 
The parameters of the models are estimated using the 
Levenverg - Marquardt iteration method based on empirical 
data sets of complete life table for both males and females. 
The Levenberg–Marquardt algorithm also known as the 
damped least-squaresmethod provides a numerical solution 
to the problem of minimizing a function, generally nonlinear, 
over a space of parameters of the function. The Levenberg–
Marquardt algorithm is more robust than the Gauss–Newton, 
which means that in many cases it finds a solution even if it 
starts very far off the final minimum. Matlab version 7.11.0 
has been used for the estimation of the parameters.  The 
Table 1 contains the values of the estimated parametersfor 
male and female people estimated with the Levenverg - 
Marquardt iteration method.  
 
3.2 Selection Criteria 
 
After fitting the models using ten different countries 
separately for male and female, we evaluate the goodness of 
fit. We consider here two goodness-of-fit measures. The first 
measure is the root mean square error (RMSE) and the other 
is the sum squared error (SSE).  
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Sum Squared Error 
This measures the total deviation of the response values from 
the fit to the response values. It is also called the summed 
square of residuals and is usually labelled as SSE. 

��� = �(�� − �����)(��)
�

���

 

A value closer to 0 indicates that the model has a smaller 
random error component, and that the fit will be more useful 
for prediction.  
 
Root Mean Squared Error 
This measure is also known as the fit standard error and the 
standard error of the regression. It is an estimate of the 
standard deviation of the random component in the data, and 
is defined as   
���� = √��� 

whereMSE is the mean square error or the residual mean 
square 

��� =
���

�
 

where� is the residual degrees of freedom and is defined as 
the number of response values n minus the number of fitted 
coefficients m estimated from the response values 
� = � –  �  
�indicates the number of independent pieces of information 
involving the n data points that are required to calculate the 
sum of squares. Note that if parameters are bounded and one 
or more of the estimates are at their bounds, then those 
estimates are regarded as fixed. The degree of freedom is 
increased by the number of such parameters. Just as with 
SSE, an RMSE value closer to 0 indicates a fit that is more 
useful for prediction  

 
Table 1: Estimated parameters of the Models along with RMSE and SSE for both male and female population 

Country 
Male Female 

Gompertz 
(�, �) 

Makeham 
(�, �, �) 

Logistic 
(�, �, �, �) 

Coale and Kisker 
(�, �, �) 

Gompertz 
(�, �) 

Makeham 
(�, �, �) 

Logistic 
(�, �, �, �)

Coale and Kisker
(�, �, �) 

Australia 
 

�� 
�� 
�̂ 
�� 
�̂ 

RMSE 
SSE 

0.2157 
0.4314 
-- 
-- 
-- 
0.00637 
0.00057 

0.3189 
0.3053 
-0.0984 
-- 
-- 
0.00312 
0.00013 

0.2774 
0.5989 
0.0041 
0.2858 
-- 
0.00281 
0.00010 

0.2202 
0.4516 
-- 
-- 
0.9699 
0.00280 
0.00010 

0.01035 
0.001501 
-- 
-- 
-- 
0.01035 
0.001501 

0.00362 
0.0001704 
-0.2044 
-- 
-- 
0.00362 
0.000170 

0.002379 
0.000068 
-0.002291 
0.4808 
-- 
0.002379 
0.000068 

0.002341 
0.000071 
-- 
-- 
0.934 
0.002341 
0.000071 

 
 
Hongkong 

�� 
�� 
�̂ 
�� 
�̂ 

RMSE 
SSE 

0.1967 
0.434 
-- 
-- 
-- 
0.001684 
0.000037 

0.2213 
0.392 
-0.02314 
-- 
-- 
0.000185 
0.0000004 

0.2195 
0.432 
-0.01227 
0.0434 
-- 
0.000046 
0.00000002 

0.1981 
0.4404 
-- 
-- 
0.9903 
0.000069 
0.00000006 

0.1155 
0.48 
-- 
-- 
-- 
0.000421 
0.000002 

0.1203 
0.464 
-0.00448 
-- 
-- 
0.000053 
0.00000003 

0.1200 
0.4767 
-0.002809 
0.01175 
-- 
0.000035 
0.00000001 

0.1158 
0.4830 
-- 
-- 
0.9959 
0.000039 
0.00000002 

Canada 

�� 
�� 
�̂ 
�� 
�̂ 

RMSE 
SSE 

0.2087 
0.4275 
-- 
-- 
-- 
0.006416 
0.000576 

0.3309 
0.2836 
-0.1168 
-- 
-- 
0.001886 
0.000046 

0.2902 
0.5561 
-0.01089 
0.293 
-- 
0.001391 
0.000023 

0.2137 
0.4501 
-- 
-- 
0.966 
0.00132 
0.00002 

0.1643 
0.505 
-- 
-- 
-- 
0.004877 
0.000333 

0.2222 
0.3918 
-0.05429 
-- 
-- 
0.001741 
0.000039 

0.1983 
0.6878 
0.00578 
0.2297 
-- 
0.000461 
0.000003 

0.1676 
0.5313 
-- 
-- 
0.9667 
0.000854 
0.000010 

England 

�� 
�� 
�̂ 
�� 
�̂ 

RMSE 
SSE 

0.2309 
0.446 
-- 
-- 
-- 
0.008216 
0.000945 

0.3234 
0.3323 
-0.08779 
-- 
-- 
0.006171 
0.000495 

0.2485 
0.8533 
0.05057 
0.3581 
-- 
0.005070 
0.000309 

0.2356 
0.4671 
-- 
-- 
0.9699 
0.005641 
0.000414 

0.1873 
0.4872 
-- 
-- 
-- 
0.006924 
0.000671 

0.2718 
0.3541 
-0.07982 
-- 
-- 
0.00374 
0.00018 

0.2368 
0.6773 
0.00408 
0.2667 
-- 
0.00334 
0.00013 

0.1916 
0.5156 
-- 
-- 
0.9628 
0.003306 
0.000142 

Israel 

�� 
�� 
�̂ 
�� 
�̂ 

RMSE 
SSE 

0.2034 
0.3675 
-- 
-- 
-- 
0.009849 
0.001261 

0.6924 
0.1156 
-0.4807 
-- 
-- 
0.003632 
0.000158 

0.2911 
0.8936 
0.04149 
0.7168 
-- 
0.000572 
0.000004 

0.2117 
0.3987 
-- 
-- 
0.9464 
0.001789 
0.000038 

0.2005 
0.5054 
-- 
-- 
-- 
0.00458 
0.00027 

0.2537 
0.4151 
-0.04973 
-- 
-- 
0.0012790 
0.0000196 

0.238 
0.6083 
-0.001928 
0.1601 
-- 
0.00009142 
0.000000091 

0.2036 
0.5255 
-- 
-- 
0.9742 
0.0004434 
0.0000024 

Japan 

�� 
�� 
�̂ 
�� 
�̂ 

RMSE 
SSE 

0.3368 
0.6832 
-- 
-- 
-- 
0.007096 
0.001208 

0.3832 
0.6225 
-0.04219 
-- 
-- 
0.000417 
0.000004 

0.3831 
0.623 
-0.04202 
0.0003203 
-- 
0.000427 
0.000004 

0.3395 
0.7086 
-- 
-- 
0.9766 
0.001708 
0.000067 

0.2527 
0.8038 
-- 
-- 
-- 
0.01721 
0.00711 

0.3246 
0.6799 
-0.06599 
-- 
-- 
0.0103 
0.0024 

0.2837 
1.023 
-0.00003574
0.126 
-- 
0.007411 
0.001208 

0.2547 
0.8994 
-- 
-- 
0.928600 
0.007869 
0.001424 
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New 
Zealand 

�� 
�� 
�̂ 
�� 
�̂ 

RMSE 
SSE 

0.2268 
0.4751 
-- 
-- 
-- 
0.002964 
0.000123 

0.2605 
0.4228 
-0.03148 
-- 
-- 
0.001341 
0.000023 

0.2571 
0.4779 
-0.01527 
0.05351 
-- 
0.00135 
0.00002 

0.2287 
0.4848 
-- 
-- 
0.9867 
0.001332 
0.000023 

0.1945 
0.5464 
-- 
-- 
-- 
0.005075 
0.000361 

0.2433 
0.4555 
-0.04531 
-- 
-- 
0.00191 
0.00005 

0.2242 
0.6944 
0.005046 
0.1685 
-- 
0.0005587 
0.0000038 

0.1976 
0.5712 
-- 
-- 
0.9709 
0.001051 
0.000014 

Poland 

�� 
�� 
�̂ 
�� 
�̂ 

RMSE 
SSE 

0.2340 
0.3776 
-- 
-- 
-- 
0.001814 
0.000046 

0.2680 
0.3344 
-0.03242 
-- 
-- 
0.000428 
0.0000024 

0.2605 
0.4325 
0.001995 
0.1163 
-- 
0.000058 
0.00000004 

0.2355 
0.3825 
-- 
-- 
0.9913 
0.000206 
0.000001 

0.1962 
0.4488 
-- 
-- 
-- 
0.0033790 
0.0001599 

0.2461 
0.3688 
-0.04714 
-- 
-- 
0.0005837 
0.0000044 

0.2376 
0.488 
-0.01278 
0.1235 
-- 
0.00007340 
0.00000006 

0.1988 
0.4622 
0.9805 
-- 
-- 
0.00006919 
0.00000006 

Singapore 

�� 
�� 
�̂ 
�� 
�̂ 

RMSE 
SSE 

0.2024 
0.4327 
-- 
-- 
-- 
0.001403 
0.000026 

0.2226 
0.3985 
-0.01904 
-- 
-- 
0.000151 
0.00000027 

0.2212 
0.4304 
-0.01036 
0.03438 
-- 
0.000034 
0.00000001 

0.2035 
0.4379 
-- 
-- 
0.9922 
0.000053 
0.00000003 

0.1499 
0.4647 
-- 
-- 
-- 
0.001761 
0.000040 

0.1729 
0.4116 
-0.02155 
-- 
-- 
0.0002468 
0.0000007 

0.1704 
0.4733 
-0.009357 
0.06139 
-- 
0.00004331 
0.00000002 

0.1512 
0.4741 
-- 
-- 
0.9867 
0.00004270 
0.00000002 

UK 

�� 
�� 
�̂ 
�� 
�̂ 

RMSE 
SSE 

0.2214 
0.4173 
-- 
-- 
-- 
0.007535 
0.000795 

0.2624 
0.3595 
-0.03889 
-- 
-- 
0.007355 
0.000703 

0.1939 
1.012 
0.08014 
0.3753 
-- 
0.006077 
0.000443 

0.2238 
0.4276 
-- 
-- 
0.984 
0.007121 
0.000659 

0.192 
0.4792 
-- 
-- 
-- 
0.007570 
0.000802 

0.2879 
0.3379 
-0.09078 
-- 
-- 
0.004238 
0.000234 

0.2299 
0.816 
0.02484 
0.346 
-- 
0.00299 
0.00011 

0.1969 
0.5098 
-- 
-- 
0.5098 
0.003382 
0.000149 

 
4. Discussion 
 
Based on RMSE and SSE values, the four models have been 
rank in the following order, starting with the best. However, 
between the first and second positions is difficult to 
establish, as the respective values of RMSE and SSE of these 
models are roughly equal. 
 
1. Logistic model: This model is the most successful of the 

four in describing the trajectory of old age mortality for 
ten different countries. The fit is good in individual 
countries, the deviations are small.  

2. Coale and Kisker model: The quadratic model was 
designed by Coale and Kisker (1990) to start at age 85. 
This model gives a very good fit at ages 85, but it fails to 
describe even approximately the values below 85 years. 

3. Makeham model: It is observed from the result that the 
fitted value of the parameter c in the Makeham model is 
not so small hence itcan’t be neglected. So at high ages 
the difference between the Gompertz model and 
Makeham model is significant in our case. But Thatcher 
et al. [2] concluded that at high ages the difference 
between the Gompertz model and Makeham model is 
negligible. 

4. Gompertz model: This classical model overestimates the 
rise of mortality with age. 

 
5. Conclusion 
 
In this paper, four mortality models namely Gompertz, 
Makeham, Logistic and Coale -Kisker have been fitted for 
ten different countries by using Levenberg Marquardt 
iteration method. The comparison has been made on the 
basis of RMSE and SSE. The Gompertz model fits well only 
for Hong Kong for female population. Makeham model give 
satisfactory fit for Hong Kong female and Singapore male 

population. Moreover, the fitting of the Gompertz model 
seems to be not satisfactory. The Logistic and Coale - Kisker 
models were far closer to the observed values and it is not 
easy to rank them. The Coale - Kisker model which is also 
known as quadratic model is pragmatic, but it has little 
theoretical support. (On the contrary: if extended indefinitely 
it would imply that the force of mortality will eventually 
reach zero, and this can only happen if immortality is 
possible).  Essentially, the quadratic model uses a parabola 
as an approximation to a more general curve. Finally, we 
may conclude that the logistic model approximation is the 
best of the four models for projection of old-age mortality. 
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