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Abstract: The panel data models are becoming more common in relation to cross-section and time series models for innumerable 
present advantages, in addition to the computational advance that facilitated theirs utilization. The existing literature has focused on the 
application of the estimators. Many of panel data model estimators are severely inconsistent due to presence of endogeneity and 
heterogeneity problem. Hence, panel data offers various opportunities to derive estimators of those result consistent estimators. This 
paper considers estimation of linear panel data models with fixed effects and random effects when the equation of interest contains 
unobserved heterogeneity as well as endogenous explanatory variables. We offer a detailed analysis and derivation of the two-stage least 
squares (2SLS) and generalized least square (GLS) estimators in the context of panel data models. 
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1. Introduction 
 
Panel (or longitudinal) data is a kind of data in which 
observations are obtained on the same set of entities at 
several periods of time. It refers to the data with repeated 
time-series observations (T) for a large number (N) of cross-
sectional units (e.g., states, regions, countries, firms, or 
randomly sampled individuals or households, etc ). Since the 
panel data relate to these units over time, presence of 
heterogeneity in these units is a natural phenomenon. The 
techniques of panel data estimation can take such 
heterogeneity explicitly into account by allowing for 
individual specific variables. If individual heterogeneity is 
left completely unrestricted, then estimates of model 
parameters suffer from the incidental parameters problem, 
noted by creel (2014). This problem arises because the 
unobserved individual characteristics are replaced by 
inconsistent sample estimates, which in turn, bias and 
inconsistent estimates of model parameters. An important 
advantage of using such data is that they allow researchers to 
control for unobservable heterogeneity, that is, systematic 
differences across cross-sectional units. Regressions using 
aggregated time-series and pure cross-section data are likely 
to be contaminated by these effects, and statistical inferences 
obtained by ignoring these effects could be seriously biased 
and inconsistent. 
 
The two most widely applied panel data model estimation 
procedures are random effects (RE) and fixed effects (FE).It 
is well-known that the consistency of the RE and FE 
estimators requires the strict exogeneity of the regressors, 
but the strict exogeneity assumption generates many more 
moment conditions than these estimators use. Hence, 
problems that generally afflict fixed effect model (i.e. 
endogeneity) and random effect model (i.e. 
heteroscedasticity) need to be addressed while analyzing 
panel data. Because of many panel data models estimators 
becomes grossly inconsistent and inefficient [2], [7], [9] and 
[14] . 
 

One of the critical assumptions of the classical linear 
regression model (CLRM) is that the error terms in the 
model are independent of all regressors. If this assumption is 
violated, then endogeneity is suspected ��� (���  , ���  ) ≠
0 , ��� ���� � ��� � and hence within estimator is no longer 
consistent [1], [2]. Also, the error terms are expected to have 
the same variance. If this is not satisfied, there is 
heteroscedasticity (i.e. �� (���) = ��� (��� + ��) =  ��Σ ) 
see [6], [8] , [10], [13] and [17].  
 
In the presence of heteroscedasticity, the usual OLS 
estimators are no longer having minimum variance among 
all linear unbiased estimators [3] and [8]. Thus, the OLS 
estimator is not efficient relative to GLS under such 
situations. The studies of [3], [4], [5], [12] and [15] focused 
on the existence of heteroscedasticity in panel data 
modelling.  
 
A number of works on the methodologies and applications 
of panel data model estimation have appeared in the 
literature see [3], [5],[7],[9],[11],[12] and [14]. Situations 
where all the necessary assumptions underlying the use of 
classical linear regression methods are satisfied are rarely 
found in real life situations. Most of the studies that 
discussed panel data modelling considered the violation of 
each of the classical assumptions separately and the detailed 
derivation of the estimators has minimum attention in much 
literature. 
 
The aim of this present paper is to elucidate the part of the 
earlier papers pertaining to panel data model estimators. The 
study contributes to the literature in several ways. First, we 
set out the assumptions behind the fixed and random effect 
approaches, highlight their strengths and weaknesses. Also, 
brief estimation method, procedures of estimation and 
detailed derivation the estimators are given. Results from 
this work would serve as useful guides to econometricians 
and students while estimating panel data that are 
characterized by the structure conjectured here.  
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2. Estimation Framework and Model 
Specification 

 
Panel or longitudinal data provide more information than 
cross-sectional data, which increases estimation precision 
and also enables researchers to control for unobserved 
heterogeneity related to the omitted variable bias in cross-
section models. Panel data can not only offer us the 
information across different individuals, but also the 
information for a given individual across the time. 
 
2.1 Panel Data models 
 
The basic panel data model takes the form; 
 

 ���  =  ���
′ � +  �� + ���  � = 1,2, … � ;  � = 1,2, … . �     (1) 

 
Where i is the individual dimension and t  is the time 
dimension. Therefore, ��� is the response of individual i at 

time t , iα  are the unobserved individual-specific, time-
invariant intercepts, ��� is the explanatory variable i  at time 

t , β  is a vector of regression coefficients, and itε  is the 
error term of individual i at time t . They are also known as 
idiosyncratic errors because they change across i as well as 

across t (Hsiao, 2002). itε  is ��� over � and �. It has usual 
properties, i.e. mean 0, uncorrelated with itself , uncorrelated 
with iα  , and homoscedastic. 
 

 �(���| �� , ��� , … ���) = 0                        (2)  
 
The various panel data models depend on the assumptions 
made about the in individual specific effects iα . Mundlak 
(1978) and Chamberlain (1982) view individual effect �� as 
random draws along with the observed variables. Then, one 
of the key issues is whether �� is correlated with elements of 
��� . The equation (3.4) is useful to emphasizing which 
factors change only across, which change only across � , and 
which change across � and �. 
 
Wooldridge (2003) avoids referring to �� as a random effect 
or a fixed effect. Instead, we will refer to �� as unobserved 
effect, unobserved heterogeneity, and so on. Nevertheless, 
later we will label two different estimation methods random 
effects estimation and fixed effects estimation.  
 
Fact that for Wooldridge (2003), these discussions about 
whether the �� should be treated as random variables or as 
parameters to be estimated are wrongheaded for micro 
econometric panel data applications. With a large number of 
random draws from the cross section, it almost always 
makes sense to treat the unobserved effects, �� , as random 
draws from the population, along with ��� and ��� . This 
approach is certainly appropriate from an omitted variables 
or neglected heterogeneity perspective. As suggested by 
Mundlak (1978), the key issue involving �� is whether it is 
uncorrelated with the observed explanatory variables ���, for 
� =  1, . . , �. 
 

In the traditional approach to panel data models, �� is called 
a random effect, when it is treated as a random variable and 
a fixed effect, when it is treated as a parameter to be 
estimated for each cross section observation. 
 
2.1.1 Fixed Effects Model 
 
One variant of model (1) is called fixed effects (FE) model 
which treats the unobserved individual effects as random 
variables that are potentially correlated with the explanatory 
variables, � � itX ���  ≠ 0, (Wooldridge, 2002). Unlike the 
random effects estimators, the FE estimator assumes nothing 
regarding the correlation structure between iα  and the 
explanatory variables. As we don’t know the statistical 
properties of iα , it can be eliminated from the model. 

Among various ways to eliminate iα , the within-group 
transformation or deviation from mean is easy to understand. 
The procedure of within transformation as follows; 
Step 1: Average equation (3.4) over � = 1,2, … … � to get 
the cross section equation: 
 

 ��� = ���� +  �� + ��̅  , � = 1, … . . �                       (3) 
  
where ��� = ���  ∑ ���

�
���  ;  ��� = ���  ∑ ���

�
���  ;  ��̅ =

���  ∑ ���
�
���  ��� ��� = ��  .These are called time means for 

each unit �. The OLS estimator for � obtained from (3) is 
called between estimator. 
 
Step 2: To eliminate �� subtract equation (3) from (1) for 
each � gives the fixed effects transformed equation, 

��� − ��� = (��� − ��� )′� + ��� − ��̅  
or equivalently 

 ����  = ����
′ � + ����  , � = 1, … � , � = 1, … �        (4)  

  
where ���� = ��� − ���  ;  ���� =  ��� − ��� ;  ���� = ��� −
��̅  ��� �� − ��� = 0 and hence the effect is eliminated. 
Also, we define � = �(��), so �(�� − �) = 0, Since �� is 
fixed or constant for every cross sectional unit. Like first 
differencing, time demeaning of the original equation has 
removed the individual effect �� . With �� out of the model, 
it is natural to estimate equation (4) by OLS if ��� is strictly 
exogenous .The OLS estimator obtained from (4) is often 
called the within estimator. Consistent estimation of this 
estimator requires itX  being strictly exogenous i.e. 
�(���|��� , … ��� , ��) = 0. However, when this assumption is 
violated, within estimator is no longer consistent. We 
suspect the correlation between �� and itX  will leads to 
endogeneity problem. Hence, two-stage least square is 
treatment for this problem. 

2.1.1.1 Two-Stage Least Square estimation 
In regression model, we assume that variable ���  is 
determined by ��� but does not jointly determine ��� . 
However, many economic models involve endogeneity that 
in which response variable is determined by joint of ���. 
When ��� is endogenous or jointly determined with ���  , then 
the estimation of the model will result inconsistent 
estimators and enlarge variance of estimators. This 
endogeneity problem is the consequence of omitted variable. 
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The treatment for this problem is to introduce instrumental 
variables ��� which cut relationship between ��� and ��� 
which depends on the following assumptions. (1) ��� is 
uncorrelated with the error ���. (2) ��� is correlated with the 
regressor ���. To allow correlation between ��� and ��� , we 
assume there exists a 1 × � vector of instruments (� ≥ �), 
��� which avoid correlation. 
 
Now assume model with one endogenous explanatory 
variable �� , ��� = ���� + ���  
 
with assumption that �(���) = 0, ��� (��  , ���) = 0 , � =
1, 2 … , � − 1 and ��� (��  , ���) ≠ 0,for K, where 
 �� , �� , … , ����  are exogenous and �� is endogenous.  
 
To fix the problem, consider �� as replacer of an endogenous 
explanatory �� satisfies that ��� (�� , ���) = 0 and �� =
 � � (��|�, �� ,�� ,…,����  ,��  )

� �� 
 ≠ 0.Thus, we have � =

(1,  �� , �� , … , ����  , �� ).Then, endogenous explanatory 
variable �� can be written as 
 

 �� = �� + ���� + … +  �������� + ���� + �� , �� ≠ 0       (5)  
 
where, by definition �(��) = 0 and 
��� (��  ;   �� , �� , … , ����  , �� ) = 0 
 
By substituting estimated ��  in the regression model we can 
estimate the model by usual OLS. 
 
For each � and � , define ���� = ��� − �̅� , �̅� =
��� ∑ ���

�
���  and similarly for ����  , ����  , ���� . 

 
Define also 
�� =  (���� , ���� , … , ����) , �� =  ����� , ���� , … , ����� , �� =
 ����� , ���� , … , ����� , and �� =  (���� , ���� , … , ����) .Then, 
the transformed model becomes �� = ��� + ��. 
 
Suppose that ��  has the same number of variables as ��  , i.e. 
� = � . We assume that the rank of �� ′��  is K, so now �� ′��  
is square matrix.  
 
By premultiplying transformed model by �� ′ and taking 
expectation we obtain instrumental variable estimator: 
 
 ���� = ��� ′������� ′��  
 = ��

�
 ∑ ∑ ��������

′�
���

�
��� �  �

�
∑ ∑ Z� ��

′ ����
�
���

�
���  

 
However, the best way to get consistent estimate is to use all 
available instruments. If we have a single endogenous 
explanatory variable, but have more than one potential 
instrument and each of which would have a significant 
coefficient in (1).  
 
Let �� , �� , … , ��  be instrumental variables such that 
�� (�� , ���) = 0 , ℎ = 1, 2, … , � , so that each �� is 
exogenous in (1) and assume �(���) = 0 , 
 ��� (��  , ���) = 0 , � = 1, … , � − 1 , ��� (��  , ���) ≠
0 , ��� � and  
��� (�� , ���) = 0 , ℎ = 1, 2, … , �. 

 
 
Now, assume that �� has more number of variables than ��  
, i.e. � > � . Define the vector of exogenous variables again 
by = (1, �� , �� … , ���� , �� , �� , … , �� ) , a 1 × � 
vector(� = � + �). The method 2SLS considers 
��, ��, … , �� as of replacer of an endogenous explanatory �� 
satisfies that ��� (���  ;  ��, ��, … , ��) = 0 and  
 

�� =  
� � (��|1,  �� , … , ����  , ��, ��, … , ��  )

� �� 
 ≠ 0 

  
The linear projection of ��  on � can be written as  
 

 �� = �� + ���� +  … +  �������� +  ���� +  … +
 ���� +  �� (6) 

 
where, �(��) = 0 and 
��� (��  ;   �� , �� , … , ����  , �� , �� , … , �� ) = 0  
 
Fit (3.13) by OLS 
 ��� = ��� + ����� +  … +  ��������� +  ����� +  … +  �����  
 
We denote �� = ( �� , �� , … , ���� , ���  ). Two-stage 
estimation under instrumental variables to an endogenous 
explanatory ��  , referencing as  
 

� = �� + �                                       (7)  
 
where �� = �� + ���� +  … + �������� +  ���� +  … +
 ���� + ��  
 
Multiplying equation ( 7 ) by �� ′ 

�� ′� = ��� ′��� + �� ′� 
 
Again multiplying by ��� ′����

 
��� ′������� ′�� = ��� ′������� ′��� + ��� ′������ ′� 

 
Taking expectation 
� ���� ′������� ′��� = � ���� ′������� ′��� �  

 +� ���� ′������ ′�� 
 
Estimation of � as in population 

� = � ���� ′������� ′��� 
 
Estimation of � as in sample 

�� = ��� ′������� ′�� 
 
Two -stage regression for estimation of � are given below. 
 
First-stage regression - obtain fitted values of ���  from the 
regression ��  where  
�� = �� + ���� +  … +  �������� +  ���� +  … +  ���� +
��   
Then, we denote 

��� = (�� |1, �� , �� … , ����  , �� , �� , … , �� ) 
Second -stage regression- Run the OLS regression � on 
(1, �� , �� … , ����  , ���) 
⋮ ⋮ ⋮  
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�� =  
� � (��|1,  �� , … , ����  , ��, ��, … , �� )

� �� 
 ≠ 0 

 
� = �� + ���� +  … + �������� +  �����  + �     ( 8 ) 

 
It is ��  with ��� (���  , ��  ) ≠ 0 that leads the estimators of 
� to be inconsistent. But , we can use �� , ℎ = 1, 2, … , � as 
a candidates for �� .let �� = ��� + ��  , and 
 

� = �Π + ��  , Π = (�� , ��, … , ��)                ( 9 ) 
 
Multiplying (9) by �′ and taking expectation  
 

� (�′�) = � (�′�)Π + � (�′�� ) 
 

Then, we have Π = �� (�′�)�
��

 � (�′�) 
 
Next , �∗ = � (�|�) = �Π ,  
 
Multiplying ( 9 ) by �∗ and taking expectation gives 
  

� (�∗�) =  � (�∗�)� + � ( �∗�) 
 
Solving for � gives  
 

 � = �� (�∗�)��� � (�∗�).                    (10)  
 

But, � (�∗�) =  � (� ′�) �� (�′�)�
��

 � (�′ �) and 

� (�∗�) = � (� ′�) �� (�′�)�
��

 � (�′ �). 
 
Therefore, substituting this results in (10) yields 
 
������ = � � ′� (�′�)�� �′ ���� � ′� (�′�)�� �′ �  

= ��
1
� � � ���

′ ���

�

���

�

���

� �
1
� � � ���

′ ���

�

���

�

���

�

��

 �
1
� � � ���

′ ���

�

���

�

���

��

��

 

�
1
�

� � ���
′ ���

�

���

�

���

� �
1
�

� � ���
′ ���

�

���

�

���

�

��

 �
1
�

� � ���
′ ���

�

���

�

���

� 

Expressing ������ in terms of transformed model in (4) :  
������  =  � �� ′��  ��� ′����� �� ′ �� �

��
 �� ′��  ��� ′����� �� ′ ��  

= ��
1
� � � ����

′ ����

�

���

�

���

� �
1
� � � ����

′ ����

�

���

�

���

�

��

 �
1
� � � ����

′ ����

�

���

�

���

��

��

 

 ��
�

∑ ∑ ����
′ ����

�
���

�
��� � ��

�
∑ ∑ ����

′ ����
�
���

�
��� �

��
 ��

�
∑ ∑ ����

′ ����
�
���

�
��� � 

 
This is called fixed effect two-stage least square (2SLS) 
estimator. 
 
2.1.1.2 Asymptotic variance of 2SLS estimator in fixed -
effect model  
 
Recall the definition of the 2SLS -estimator of transformed 
model 

������  =  � �� ′��  ��� ′����� �� ′ �� �
��

 �� ′��  ��� ′����� �� ′ ��  

 =  � �� ′��  ��� ′����� �� ′ �� �
��

 �� ′��  ��� ′����� �� ′ �� 

 ������ − � =  � �� ′��  ��� ′����� �� ′ �� �
��

 �� ′��  ��� ′����� �� ′ �� 
Therefore, the variance of 2SLS -estimator is defined by 

Avar ��������  =  � � ������� − ��������� − ��
′ � 

 
=

� � � �� ′��  ��� ′���
��

 �� ′ �� �
��

�� ′��  ��� ′���
��

 �� ′ �� ��′��  ��� ′���
��

 �� ′ ��  � �� ′��  ��� ′���
��

 �� ′ �� �
��

 � 
 
=

 � �� ′��  ��� ′���
��

 �� ′ �� �
��

 �� ′��  ��� ′���
��

 �� ′ �(�� ��′ ) ��  ��� ′���
��

�� ′ ��  ��� ′��  ��� ′���
��

 �� ′ �� �
��

  

 
Under Homoskedasticity (constant variance of error 
term), �(�� ��′ ) = �� ,then  
 
Avar �������� =

�� � �� ′��  ��� ′����� �� ′ �� �
��

 �� ′��  ��� ′����� �� ′ ��  ��� ′������� ′ ��   

 ��� ′��  ��� ′����� �� ′ �� �
��

 

 = ��� �� ′�� �� ��� �� ′���� ��  � �� ′�� �� ���
  

 
where �� = ��  ��� ′����� �� ′ is projection matrix  

 = ��� �� ′�� �� ��� , ����� �� = ��
′  ��� ��

� = ��  

 = �� � �� ′��  ��� ′����� �� ′�� �
��

  
 
When �(� � ′) = ��, then covariance matrix has the same 
form as OLS, but in terms of predicted values: 

 Avar � ������� = ��  � ���� ′��  �  �
��

 

Recall � � = ���′�����′� implies ��  � = ��  ��� ′����� �� ′��  
(OLS formula applied to the first stage ) , thus  
 ��� ′��  � = �� ′��  ��� ′����� �� ′��  ��� ′����� �� ′��   
Hence, 

 Avar � ������� = �� � �� ′��  ��� ′����� �� ′�� �
��

  
 

= �� �
��

�
∑ ∑ ����

′ ����
�
���

�
��� � ��

�
∑ ∑ ����

′ ����
�
���

�
��� �

��

 ��
�

∑ ∑ ����
′ ����

�
���

�
��� �

�

��

 

where �� can be consistently estimated by  
 ��  � = (�� − �)�� ���′���  = (�� − �)����� −
X� ������)′��� − X� �������  
 
The ���  = �� − �� ������ which is the �� × 1 column vector 
of estimated residuals. Notice that these residuals are not the 
residuals from the second stage OLS regression of 
dependent ��  on the predicted variables �� . 
 
Therefore, the estimated asymptotic variance of 2SLS 
estimator is 

Av�ar �������� = ��  � � �� ′��  ��� ′����� �� ′�� �
��

 
 

= ��  � �
��

�
∑ ∑ ����

′ ����
�
���

�
��� � ��

�
∑ ∑ ����

′ ����
�
���

�
��� �

��

 ��
�

∑ ∑ ����
′ ����

�
���

�
��� �

�

��
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However, a major limitation of the fixed effects estimator is 
that the coefficients of time-invariant explanatory variables 
are not identified. Thus it is not suited to estimate the effects 
of time constant variables, such as ethnic group, education 
before landing and immigration class on earnings. 
 
2.1.2 Random effects model 
It is commonly assumed in regression analysis that all 
factors that affect the dependent variable, but that have not 
been included as regressors, can be appropriately 
summarized by a random error term. In our case, this leads 
to the assumption that the �� are random factors, 
independently and identically distributed over individuals 
and hence treated as error term. 
 
This model is another variant of the model (1) which 
assumes that the unobserved individual effects �� are 
random variables that are distributed independently of the 
explanatory variables i.e. 
 

 � ���� itX � = 0                             (11)  
 

This model is called random effects model, which usually 
makes the additional assumptions that ��  ~����(�, ��

�) and 
 

 ���  ~����(0,  ��
�)                            (12)  

 
Thus, we write the random effects model as 
 

 ���  = ���
′ � +  ���  � = 1,2, … � ;  � = 1,2, … . �       (13)  

 
where ��� =  �� + ��� which treated as an error term 
consisting of two components :  
 
An individual specific component (��) , which does not vary 
over time, and a remainder component (���), which is 
assumed to be uncorrelated over time. That is, all correlation 
of the error terms over time is attributed to the individual 
effects ��. 
 
The �� are assumed independent of ��� and itX  which are 
also independent of each other for all � and �. This 
assumption is not necessary in the fixed effect model. The 
components of Cov���� , ���� = ����� , ���� are ��

� = ��
� + ��

� 
if � = � and � = �, ��

� if � = � and � ≠ � and 0 if �, � and 
� ≠ �. Thus, the Ω matrix or variance structure of errors 
looks like  
 
 Var (���)  = ��

���  + ��
� ��  ��

′   
 

=

�
�
�
� ��

� + ��
�  ��

�  … .  ��
�

 ��
�   ��

� + ��
�  …  ��

� 
 ⋮ ⋮ ⋱ ⋮ 

  ��
�  ��

�  ⋯  ��
� + ��

� �
�
�
�

= Ω              (14)  

 
where �� is a � × 1 column vector of ones. when Ω has the 
above form, we say it has random effects structure. 
 
A random effect model is estimated by generalized least 
squares (GLS) when the variance structure is known. 
Compared to fixed effect models, random effect models are 

relatively difficult to estimate. This document assumes panel 
data are balanced.  
 
2.1.2.1 Generalized Least Squares (GLS)  
It is well known that the omission of an explanatory 
variable(s) or uses of an incorrect functional form in a 
regression that otherwise satisfies the full ideal conditions, 
can lead to the erroneous conclusion that autocorrelation or 
heteroscedasticity is present among the disturbances. Thus, 
variance of error term is not constant. Heteroscedasticity is 
the case where �����  ���

′ �  = Ω = �� Σ is a diagonal matrix, 
so that the errors are uncorrelated, but have different 
variances. 
 
The common practice, however, is to use generalized least 
squares (GLS) and it achieves efficiency by transforming a 
heteroscedasticity variance covariance matrix into a 
homoscedastic one. When Ω is known (given), GLS based 
on the true variance components is BLUE and all the 
asymptotically efficient as either n or T approaches infinity 
(Baltagi 2001). When �� is a random variables then OLS 
estimator is generally inefficient relative to GLS estimator. 
Because every ��� for � = 1,2, … , � contains the same �� , 
there will be covariance among the observation for each 
individual that GLS will exploit. The GLS estimator 
corresponding to this component structure has special 
structure. This need all of its reweighting within the time 
series ��  of an individual. 
 
Therefore, to derive GLS we need to focus only on T-
dimensional relationship, 
 

 �� = ��� + ���� + ��                              (15)  
 
setting �� = ���� + ��, model becomes �� = ��� + �� . 
 
Furthermore, the conditional variance of ��  given �� depends 
on an orthogonal projector , ��. 
 
Define ��

′ �� = � , we can write variance of random effect 
structure , Ω as  
 
 Ω = ��

� �� ��
′  +  ��

��� = ���
� �� (��

′ ��)����
′  +  ��

��� Let 
�� = �� (��

′ ��)����
′ = �� − ��  then, 

 Ω = ���
����  + ��

���  = ( ���
� + ��

� ) ��  +  ��
� (��  − ��) 

 = ( ���
� + ��

� ) ��  +  ��
� ��  

 = ( ���
� + ��

� ) ( �� + � ��), where � = ��
�

���
����

�  
 
For application of GLS estimator, one needs to know the 
inverse of Ω�� which van be written as 

Ω�� = ��
�� ��� −

��
�

���
� + ��

� ����
′  � 

  

= ��
�� ��� −

 ���
�

���
� + ��

�  
1
�

����
′  � 

which can also be written as  

 Ω�� = ��
�� � ��� −

1
�

����
′ � + � 

1
�

����
′  � 

=  ��
�� � �� + � 

1
�

����
′  � 
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Note that �� = �� − �� = �� − �
�

����
′  used to transform the 

data in deviation from individual means and �
�

����
′  takes 

individual means. 
 
Suppose that instead of � (��) = �����  , we may have 
�� (��) = Ω = ��Σ , where the matrix Σ contains terms for 
heterogeneity which is known, symmetric and positive 
definite but �� is unknown. 
 
Assume Ω has the eigenvalues ��, �� , … , �� , by Cholesky’s 
decomposition, we can write as  

Ω = �Λ� ′ 
where Λ is a diagonal matrix with the diagonal elements 
(��, �� , … , ��) and � is an orthogonal matrix. Columns of S 
are the characteristic vectors of Ω and the characteristic 
roots of Ω are arrayed in the diagonal matrix Λ .Thus,  
 

Ω�� =  ���Λ��� ′ �� =  ���Λ��/� Λ��/�� ′ �� = ��′ 
 
where � = ���Λ��/� and Λ��/� is a diagonal matrix with 
the diagonal elements ����, ����, … , ���. Then its straight 
forward to prove that �′Ω = ��  , so �′(�Ω �′) = �′  
 
Our interest is to make error terms to be ��� which leads to 
have constant variance. �� , �� and �� has typical element 
(��� − ����) , (��� − ����) an (��� − ���̅) respectively , where 
� = 1 − � ��

�

���
����

� . The term � gives a measure of the 

relative sizes of the within and between unit variances.  
 
The random effect estimator (GLS) uses both within-group 
(deviation from individual mean) and between-group 
(individual mean) variations, but weights them according to 
the relative sizes of ���

� + ��
� and ��

�. It is equivalent to the 
following two steps:  
 
1) Transform the data: ���

∗ = ��� − ���� , ���
∗ = ��� −

����  ��� ���
∗ = (1 − �)�� + ��� − ��̅�. 

 
2) Regress ���

∗  on ���
∗ . In GLS, we just need to compute � 

using the matrix Ω. Then variance parameters ��
� and ��

� can 
be estimated from the within-group and between-group 
regression residuals. Note that � = 0 corresponds to pooled 
OLS, � = 1 and ��

� = 0 corresponds to within estimation, 
and � → 1 as � → ∞, this is a two-step estimator of �. λ=0 
implies there is no covariance among observations. Then, 
�����

�
→ ��������  where Parameter � can take any value 

between one and zero, i.e. 0 ≤ � ≤ 1. 
Finally, to obtain GLS estimator run OLS on the 
transformed model: 
 

 ���
∗ = ���

∗ � + ���
∗                                 (16)  

 
Where ���

∗ = (1 − �)�� + ��� − ��̅� which is asymptotically 
���. This transformed model satisfies the classical 
assumption. Because Ω is assumed to be known, ���

∗  and ���
∗  

are observed data. 
 
 
 

Therefore, the random effect estimator is given by ����� =

��∗′�∗�
��

�∗′�∗  
 = ( � ′��′� )��� ′��′�  
 = ( � ′Ω� )��� ′Ω �  
 = �∑ ��

′�
��� Ω�����

�� ∑ ��
′�

��� Ω����   
 = �∑ ∑ ���

′ Ω�����
�
���

�
��� ��� ∑ ∑ ���

′ Ω�����
�
���

�
���   

and  
The variance of GLS estimator which is conditional on ��� 
can be calculated using  
 �����  =  (�∗′�∗)���∗′�∗  
 =  (�∗′�∗)���∗′( ��

∗� + ��
∗ ) 

 =  � + (�∗′�∗)���∗′��
∗ 

 ����� − � = (�∗′�∗)���∗′��
∗  

 
Therefore,  
��� �������  =  � � ������ − �������� − ��′ �  
 =  � � (�∗′�∗)���∗′�∗ �∗′�∗(�∗′�∗)�� �  
 =  (�∗′�∗)���∗′� (�∗ �∗′)�∗(�∗′�∗)��  
 =  (�∗′�∗)���∗′�∗(�∗′�∗)�� 
 =  (�∗′�∗)�� 
 =  (� ′��′�)�� 
 =  �� ′Ω������

 
 = �∑ ��

′�
��� Ω�����

��
 

 = �∑ ∑ ���
′ Ω�����

�
���

�
��� ���

  
 
Covariance matrix Ω is assumed to be known, since ���

∗  and 
���

∗  are observed data. The gain to this approach is that it 
substantially reduces the number of parameters to be 
estimated. However, assumption (11) is unlikely to hold in 
many cases. In the present study, the unobserved individual 
invariant effects �� could include personal characteristics 
such as ability, motivation and preferences which are very 
likely related to some explanatory variables for wages, like 
educational attainment, social network type and content and 
so on. In this case � ���� itX � ≠ 0 and the random effects 
estimator is biased and inconsistent. 
 
3. Conclusion and Recommendation 
 
In this paper, we have discussed brief estimation method and 
procedures for estimating panel data regression models. The 
assumptions behind the fixed and random effect approaches 
and their strengths and weaknesses are also presented. We 
have shown how to estimate fixed effect panel data models 
when the equation contains endogenous explanatory 
variables, where endogeneity is conditional on the 
unobserved effect and the estimation of random-effects is 
based on the assumption that the correlation between the 
regressors and the unobservable, individual-specific effects 
is zero. Two estimators are considered in estimating panel 
data models with endogeneity and heteroscedasticity. 
Detailed derivations of linear panel data models estimators 
are discussed. In particular, we derive two-stage least 
square(2SLS) estimator to estimate fixed effects and 
generalized least square (GLS) to estimate random effects. 
One of the most important uses of deriving these estimators 
is to increase understanding of estimators and reduce 
computational difficulty while estimating panel data models. 
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It is hereby recommended that for any econometric problems 
involving both cross-sectional and time series data, it is 
appropriate and adequate to use panel data model in 
analyzing such data. There are other methods of analyzing 
panel data in econometrics depending on the econometric 
problem to be addressed; such methods include the random 
intercept model, Pooled model, unrelated regression model, 
dynamic model, unbalance panel data model etc. It is 
recommended that further study / research work should 
focus on the use of these methods. 
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