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Abstract: This paper presents an approach that investigates a free terminal optimal time control of an SIR (Susceptible-Infected-
Removed) epidemic model. In order to reduce the infected group and increase the removed individuals, we present a control simulating 
vaccination program considering also the minimum duration of a vaccination campaign. The optimal control and the optimal final time 
are found using Pontryagin's maximum principle and the additional transversality condition for the terminal time .We solved the
optimality system by an iterative method, and then we confirm the performance of the optimization strategy by numerical simulations.
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1. Introduction 

Mathematical modeling in epidemiology was pioneered by 
D. Bernoulli in 1760 in his work demonstrating the 
effectiveness of the technique of variolation against 
smallpox. Since that time, theoretical epidemiology has 
witnessed numerous developments. In recent years, 
mathematical models have become a powerful tool for 
predicting the developing tendency of the infectious disease, 
determining the key factors of the spread of infectious 
disease and seeking the optimum strategies of preventing and 
controlling the spread of infectious diseases. 

Among the effective methods to prevent and control the 
spread of infection, the public-health authorities usually use 
vaccination. It's a powerful tool that allows for the mass 
prevention of infection rather than treating the symptoms of 
infection. Vaccination saves million of lives each year 
around the world. A tremendous number of models with 
vaccination have been formulated, analyzed and applied to a 
variety of infectious diseases, as in references [3], [5], [8]. 
Currently, the guidelines for diseases immunization are 
based on the conventional concept of time constant, while in 
practice, it's both difficult and expensive to implement 
vaccination for large population coverage in large time, 
especially while considering financial and logistical 
constraints. That's why we have a whole interest to research 
for an optimal final time which allows us to attempt the aim 
of those strategies with an optimal cost. In this context, we 
set a free terminal time optimal control problem in the case 
of an SIR (Susceptible-Infected-Removed) epidemic model 
with vaccination. A control representing the percentage of 
susceptible individuals being vaccinated per time unit is 
considered in order to minimize the number of infected 
individuals and maximize the removed individuals during the 
course of an epidemic. The minimum duration of the 
vaccination program is also considered. This paper is 
organized as follows. In section 2, we will describe the 
mathematical model with control term. The analysis of 
optimization problem is presented in section 3. In section 4, 
we will give a numerical appropriate method and the 
corresponding simulation results. Finally, the conclusions are 
summarized in section 5. 

2. Model Formulation 

We consider an SIR epidemic model with constant total 
population size. The population is divided into three disease-
state compartments: susceptible individuals (S), people who 
can catch the disease; infectious (infective) individuals (I), 
people who have the disease and can transmit the disease; 
recovered individuals (R), people who have recovered from 
the disease. We assume that an individual can be infected 
only through contacts with infectious individuals and that 
immunity is permanent. The transitions between different 
states are described by the following parameters: 

   is the recruitment rate of susceptible; 
   is the effective contact rate; 
   is the natural mortality rate; 
 d  is the disease induced death rate; 
 r  is the recovery rate.  

The dynamics of the model are governed by the following 
system of differential equations subject to non-negative 
initial conditions 

( )

dS SIS
dt N

dI SI d r I
dt N

dR rI R
dt

 

 



    

    



 


(1)

The strategy of the control we adopt consists of a vaccination 
program. So, we introduce into the model (1) a control 

( )u t representing the vaccination rate at time t . The control 
( )u t  is the fraction of susceptibles individuals being 

vaccinated per unit time. We assume that all susceptibles 
vaccinees are transferred directly to the removed class. The 
mathematical system with control is given by the nonlinear 
differential equations 
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( )

dS SIS uS
dt N
dI SI d r I
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dR rI R uS
dt

 

 



     

    



  


(2)

With (0) 0,  (0) 0S I  , and (0) 0R  are given. And 
( ) ( ) ( ) ( )N t S t I t R t   is the total population number at 

time t .

3.  Optimal Control Problem

In practice, it's both difficult and expensive to implement 
vaccination for large population coverage in large time, 
especially while considering financial and logistical 
constraints. That's why we formulate an optimal control 
problem with free terminal time to derive the optimal 
duration of vaccination. We first define the objective 
functional as follows 

2 2

0

( , ) ( ) ( ) ( )
2

f
t

f f
AJ u t I t R t u t dt Bt     

  (3) 

where 0A  , 0B   are the weight constants of the control 
and time respectively. ft represents the duration of the 
vaccination program. Our goal is to minimize the duration of 
vaccination and systemic costs attempting to reduce the 
number of infeted and increase the removed individuals. We 
seek an optimal control u  and an optimal terminal time ft

such that 

 ( , ) min ( , ) :  f f fJ u t J u t u U t    (4) 

Where U  is the set of admissible controls defined by 
  f( ) : 0 ,  is measurable,  t  0, tU u t u b u   ò

Pontryagin's Maximum Principal converts (2), (3) and (4) 
into a problem of minimizing a Hamiltonian, defined by 

2
3

12 i
i

i
AH I R u f



    (5)

where if  is the right side of the differential equation of the 
thi  state variable. 

By applying the Pontryagin's maximum principle [2], we 
obtain the following theorem 
Theorem 1: Given an optimal control u  an optimal 
terminal time *

ft , and solutions S , I   and R  of the 
corresponding state system , there exists an adjoint vector 

1 2 3, ,        satisfying 
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with the transversality conditions 
1 2 3( ) ( ) ( ) 0f f ft t t    

Futhermore, the optimal control u  is given by 

 1 3min ,max 0,
S

u b
A

  


  
  

    
(6)

and the optimal final time is given by 

      2
2

2f f f

f

AR t I t u t
t

B

  


 

 (7)

Proof. The adjoint equations and transversality conditions 
can be obtained by using Pontryagin's Maximum Principle 
such that 

·
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The optimal control u  can be solve from the optimality 
condition,

0H
u





that is 

1 3 0H Au S S
u

 
   


By the bounds in the control U , it is easy to obtain u  in the 
form of (6). The transversality condition for ft  to be the 
optimal terminal time can be stated as  

         ,, , ,f f f f f f
gH t x t t u t t x t
t

     
 



where    2, fg t x t Bt  that is

     2 2 0
2f f f f
AI t R t u t Bt      

Thus, ft  may be rewritten as in (7). 

4. Numerical simulations 

In this section we present the results obtained by solving 
numerically the optimality system. This system consists of a 
two-point boundary value problem, with separated boundary 
conditions at times 0t   and t ft . There were initial 
conditions for the state variables and terminal conditions for 
the adjoints. In addition, the final time ft  itself is now a 
variable and must satisfy the transversality condition (7). The 
Algorithm we used proceeds as follows 

Algorithm 2 
 Start with an initial guess of the final time; 
 Choose initial guess of the state variables, the adjoint 

variables and the control; 
 Forward solving of the state system; 
 Backward solving of the adjoint system ; 
 Update the control using the characterization (6); 
 Update the terminal time using the characterization (7); 
 Continue until the optimality condition is achieved. 

For a detailed description of the semi-implicit finite 
difference method used for solving the optimality system, we 
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refer the interested reader to [1]. The numerical simulations 
are carried out using Matlab and using the following 
parameter values and initial conditions taken for [1]. 

 Initial conditions:   60 3 10S   ,  0 30I  ,  0 28R 

 Parameter values: 0.3095  , 1174.17  ,
53.9139 10   , d 0.63 , r 0.2

Note that the parameter   is calculated from 

 0R d r     with 0 1.9R   The critical level of 
vaccination needed to protect the population is defined by 

 01 1/CV R   (see [5]), so one has 0.47Cb V  . As 
defined above, we attempt to give the optimal free final time 
needed to reduce the infected group. Considering the critical 
level of vaccination, we give a final time sufficient to 
eradicate definitively disease. By this way, numerical 
simulations suggest 148  days as final time of the 
vaccination campaign. 

The graphs below, allow us to compare changes in the 
number of infected, susceptible and removed individuals 
before and after the introduction of control. Figure1 gives an 
example of the evolution of the number I  with and without 
control. We notice that in absence of control, the infected 
group grew to extremely high levels and in presence of the 
control, this group decrease greatly, where the maximum 
number of infected individuals is 77 infections. 

Figure 1: The function I with and without control.

Figure2 also shows the effect of control by indicating that the 
number S  decreases more rapidly during the vaccination 
campaign. 

Figure 2: The function S with and without control.

Figure3, show that the number of people removed begins to 
grow notably from the first day, instead of the 48st  day in 
absence of control. In the end of the vaccination campaign, 
all population is removed. Which show the effectiveness of 
the control to eradicate definitively the infection. 

Figure 3: The function R with and without control.

Finally, Figure4 gives a representation of the optimal 
control u

Figure 4: The optimal control u

5. Conclusion

The purpose of this work is to derive a new control strategy 
for an SIR epidemic model, considering a control simulating 
vaccination program. By this way, both the terminal time, 
and a control u representing the pourcentage of susceptible 
individuals being vaccinated per time unit, were objectif to 
minimise. Numerical simulations demonstrate an interesting 
result : The infected groupe and the terminal time are 
reduced, which confirm the effectiveness of the approach. 
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