Phylogenetic Studies on *Thaparocleidus* Jain, 1952, Infecting *Wallago attu* Bloch and Schneider, 1801
Inferred from 28S rDNA Sequences in India

Saroj Rajvanshi¹, Nirupama Agrawal², Manoj Kumar Upadhyay³

¹² Department of Zoology, University of Lucknow- 226007, Uttar Pradesh; India
³Biotech Park, Jankipurum, Sector-G, Kursiroad, Lucknow-226021, Uttar Pradesh; India

Abstract: Five species of the genus *Thaparocleidus* Jain, 1952 (*Ancylostodiscoidae*) namely *T. wallagonius* Jain, 1952, *T. yogendraii* Agrawal, 1981, *T. gomtius* Jain, (1952) Lim, 1996, *T. indicus* (Kulkarni, 1969) Lim, 1996 and *T. sudhakari* (Gusev, 1976) Lim, 1996, gill parasites had been collected and restudied in detail, from siluriform fish host, *Wallago attu* Bloch and Schneider, 1801. All were oioxenous species. *T. yogendraii*, *T. gomtius*, *T. indicus* and *T. sudhakari* had been collected for molecular study from freshly killed fish hosts (*W. attu*). We could not collect *T. wallagonius* (type species) for DNA isolation (rare species). Obtained sequences of *T. yogendraii*, *T. gomtius*, *T. indicus* and *T. sudhakari* had been compared with 18 retrieved sequences of *Th aparocleidus* sp. (Table 1), using redescribed by Rajvanshi & Agrawal [16].

Keywords: *Thaparocleidus* Jain, 1952, *Wallago attu*, 28S rDNA, Phylogenetic analysis, Secondary structure

1. Introduction

Wallago attu, known as the freshwater shark, is a demersal and potamodromous “sheatfish” found inhabiting in standing and running inland water bodies of India, Bangladesh, Pakistan, Nepal, Burma, Sri-Lanka, and other Asian countries including Thailand, Vietnam, Kampuchea, Malay Peninsula, Indonesia and Afghanistan [4, 6, 7, 15]. *W. attu* or “Padhan” as it is known locally in India, has been studied extensively in India as well as in the rest of the Asian countries for helmint parasites. The freshwater shark *W. attu* in India, is indisputably having greatest monogenes diversity (5 species of *Thaparocleidus*, 4 species of *Bychowskysylla* Akhmerov, 1952, 2 species of *Mizelleus* Jain, 1957, 4 species of *Hamatopeduncularia* Yamaguti, 1953, one species of *Rhamnocercus* Monaco et al., 1954, one species of *Cosmetocleithrum* Kritsky et al., 1986 and 2 species of *Neocalceostoma* Tripathi, 1959 [13]. Number of *Thaparocleidus* sp. varies 4-5 namely *T. wallagonius*, *T. yogendraii*, *T. gomtius*, *T. indicus* and *T. sudhakari*. per host (*T. wallagonius* is rare species). We have collected *Bychowskysylla* sp. and *Mizelleus* sp. along with *Thaparocleidus* from gills of *W. attu*.

Genus *Thaparocleidus* has greatest species diversity amongst the member of *Ancylostodiscoidae* Gusev, 1961 [11] and mentioned 16 species of the genus *Thaparocleidus* from India, parasitizing on *W. attu* [10, 11]. Of above 16 species only five species have been found valid, morphologically, which is further confirmed using molecular tool (rest are either synonymised or transferred into other genera). It is worthy to mention that all being oioxenous species (strictly host specific). Pandey et al. [14], redescribed *T. wallagonius* (originally *T. yogendraii*), *T. indicus*, *T. gomtius*, *T. malabaricus*, *T. seenghali* and *T. pusillus* along with reproductive biology and behavioural aspects. Later on *T. yogendraii* Agrawal, 1981 was redescribed by Rajvanshi & Agrawal [16].

2. Materials and Methods

2.1 Parasite collection and identification

About two hundred specimens of *W. attu* (type host) were collected from the River Gomti, local fish markets of Quaiserbaugh at Lucknow (26.8470° N, 80.9470° E) and various water bodies of Haidergarh at Babaranki (26.9200° N, 81.2000° E), Hardoi (27.4167° N, 80.2500° E), Sidhuali at district Sitapur (27.5700° N, 80.6800° E), State of Uttar Pradesh, India for investigation, during 2009–2013. Live hosts were also bought from fish markets and maintained in glass aquaria. Hosts were identified by Fishbase [4]. Gills of freshly dead hosts were examined fresh as well as fixed (3% formaline diluted with lukewarm water). Parasites were dislodged with micro needles in glass petri-dishes and studied under a phase contrast microscope (Olympus BX 51). The methods for staining, mounting and illustrating the dactylogyrids were as described by Kritsky et al., [9]. Measurements were taken in µm using a calibrated micrometer following the procedure and terminology of Gusev [5], means are followed by the range and the number (n) of specimens measured in parentheses. Unstained glycerine mounts, sealed with sealant, were used for measurements of soft as well as hard parts. Measurements

Paper ID: 020131641

www.ijsr.net
and illustrations were made with the help of a image taken with camera (Olympus– Photometrics coolsnap) attached with microscope, using Image-ProExpress 6.0 (for image analysis).

2.2 DNA Isolation and Amplification

Genomic DNA was extracted from ethanol-preserved parasites using Qiagen’s Dneasy Blood and Tissue Kit, Hilden, Germany with slight modifications in manufacturer’s instructions (as per requirements). Partial 28S rDNA region of T. yogendratri, T. gomtius, T. indicus, and T. sudhakari was amplified in an Eppendorf Master Cycler Personal (PCR machine: Polymerase chain reaction machine) using forward (5'– ACCCGCTGAATTAAAGCAT-3') and reverse (5'– CTTTCAGAGTACTTTTCAAC-3') primers [21]. The reaction volume was 25μl, containing 2μl polymerase chain reaction (PCR) buffer (10X), 0.5μl Taq polymerase (5 Units), 1μl MgCl2 (25 mM), 5μl genomic DNA and 15μl miliQ water. PCR conditions were 95°C for 4 min (initial denaturation), followed by 35 cycles of 95°C for 1 min (denaturation), 55°C for 45 sec (annealing), 72°C C for 1 min (extension) and 72°C C for 10 min (final extension). PCR products were checked on 1.5 % agarose gels in TAE buffer stained with ethidium bromide (EtBr) and visualized under UV light. Sequencing was carried out by Xcelris Labs Limited, Ahmedabad using Big Dye® Terminator v3.1 cycle sequencing kit as per manufacturer’s instructions.

2.3 Data analysis

Sequencing products were subjected to BLAST (Basic Local Alignment Search Tool) for homology search. Multiple sequence alignment was performed using Clastal W [20]. The sequences of query species (T. wallagonius (retrieved), T. gomtius, T. indicus, T. sudhakari, yogendrai) were compared with other retrieved sequences (Table 1) to infer phylogenetic relationship among species of genus Thaparocleidus. Sequence data (obtained /retrieved) was analyzed using neighbor-joining and minimum evolution methods of MEGA 5 [22] for generating phylogenetic tree among them. The robustness of the inferred phylogeny was assessed using bootstrap value at 1,000 replications. Species differentiation has been confirmed using secondary structures and its various parameters can be used as an important tool for species discrimination.

Table 1: Genbank reference sequence used in this study, with their respective information

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Parasite Host</th>
<th>Accession no.</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thaparocleidus asoti Silurus astus</td>
<td>DQ157669</td>
<td>Guangdong, China</td>
</tr>
<tr>
<td>2</td>
<td>Thaparocleidus campylopeterocirrice Pangasius hypophthalmus</td>
<td>EF100546</td>
<td>Panyu, Guangdong, China</td>
</tr>
<tr>
<td>3</td>
<td>Thaparocleidus sp. Pangasius</td>
<td>EF100555</td>
<td>Panyu, Guangdong, China</td>
</tr>
</tbody>
</table>

3. Results

3.1 Phylogeny

The sequence length of species under study varied from 351 (T. sudhakari) to 372 (T. indicus). G (Guanosine) and C (cytosine) content ranged between 45% and 50.1%. The phylogenetic trees (Figure 1.1 & 1.2) generated by neighbor-joining (NJ) and minimum evolution (ME) methods of MEGA 5 [22]. An estimate of average evolutionary divergence of sequence pairs is 0.55 (Maximum Composite Likelihood model). Estimate of evolutionary divergence ranged 0.10-0.78 between sequence. The evolutionary
distances were computed using p-distance method in the units of the number of base differences per site. Codon position included were 1st+2nd+3rd+Noncoding. Gaps and missing data were eliminated. Minimum Evolution was also based on p-distance method. The ME tree was constructed using close-neighbor- interchange (CNI) algorithm.

The phylogenetic trees showed four clusters for the genus *Thaparocleidus*. All the Indian species formed a distinct cluster than (16 retrieved) species of other countries. All the retrieved species of other countries were clustered in group one. *T. indicus*, *T. gomtius* and *T. 1 HS* were clustered in group two. *T. wallagonius*, *T. yogendraii* and *T. sudhakari* were in group three and *T. parvulus* was in group four. *T. sudhakari*, formed a sister clad with *T. wallagonius* and *T. yogendraii* (sister species). However *T. indicus* and *T. gomtius*, of group two formed sister clad with *T. sp. 1*. In Neighbor-Joining method of phylogeny, *T. indicus* showed 34% bootstrap value with *T. gomtius*. *T. 1 HS* had 16% bootstrap value with *T. indicus* and *T. gomtius* (group two). However, *T. wallagonius* and *T. yogendraii* showed 51% bootstrap value with each other. *T. sudhakari* had 19% bootstrap value with *T. wallagonius* and *T. yogendraii* (group three). In Minimum Evolution method, almost similar results had been obtained. *T. gomtius*, formed sister clad with *T. indicus*; *T. yogendraii* with *T. wallagonius* and *T. sudhakari*. The NJ and ME methods had proved that all the five are genetically distinct and valid species. Both methods of phylogeny (NJ and ME), confirmed *Thaparocleidus* to be of monophyletic origin [12, 17, 18] and all species, evolved from the same ancestral node. The species described from China, Czech Republic and India formed distinct clusters, proved to be of different origin.
3.2 Secondary Structures

The secondary structures of *T. yogendraii* (Figure 1.3), *T. sudhakari* (Figure 1.6), *T. indicus* (Figure 1.5) and *T. gomtius* (Figure 1.4), generated by Mfold showed the distinction between the species using highest negative free energy and pattern of loops formation. We are not focusing on secondary structures of *T. wallagonius* [23]. Secondary structures of sequence of the Indian *Thaparocleidus* sp. (under study) proves that all are genetically distinct. Secondary structure of *T. wallagonius* had highest negative free energy $\Delta G = -324.90$ Kcal/mol [23]. However, *T. indicus*, *T. gomtius*, *T. sudhakari* and *T. yogendraii* has -99.20 Kcal/mol, -116.40 Kcal/mol, -101.20 Kcal/mol and -107.20 Kcal/mol, negative free energy respectively. In secondary structure of *T. wallagonius*, the order of loop preference (in number), was interior loop, hairpin loop, bulge loop, multi loop and exterior loop [23]. In *T. yogendraii*, it is hairpin loop, interior loop, bulge loop, multi loop and exterior loop. In *T. gomtius*, order of loops is hairpin loop, (interior loop and bulge loop are equal in number), multi loop and exterior loop but in *T. sudhakari*, it is hairpin loop, interior loop, multi loop, bulge loop and exterior loop. In *T. indicus*, the loop preference is hairpin loop, interior loop, bulge loop, multi loop, and then exterior loop.

Figure 1.3: Secondary structure of *T. Yogendraii*

Figure 1.4: Secondary structure of *T. gomtius*

Figure 1.5: Secondary structure of *T. indicus*

Figure 1.6: Secondary structure of *T. Sudhakari*

4. Discussion and Conclusions

Discrimination between species of *Thaparocleidus* relies chiefly on the structure of sclerotized parts of haptor and copulatory organs. Sometimes, species identification could be difficult due to slight structural variations (ex. *T. suhakari*, *T. gomtius* and *T. indicus*). Thus, intraspecific relationship of five species of genus *Thaparocleidus*, infecting gills of freshwater shark *W. attu* in India, is evaluated for the first time using molecular data. Our study shows that *T. wallagonius*, *T. yogendraii* *T. indicus*, *T.
and supports monophyly of the genus *Thaparocleidus*.

Molecular characterization, using molecular markers further strengthens our observations that all the five species, under study, are genetically distinct. Number, position and type of loops formed in secondary structures of different species of *Thaparocleidus* are quite distinct. Hence, it confirms the identification of species and outcomes of primary sequence [3]. It is proved morphologically as well as molecularly that all the five *Thaparocleidus* species, from *W. attu* i.e T. wallagoni, T. yogendraii, T. gomtius, T. indicus and T. sudhakari are valid species and evolved from common ancestor. Thus, the agreement between molecular and morphological intraspecific similarities observed in *Thaparocleidus* supports the validity of morphometric characters used for species identification.

5. Acknowledgements

Facilities developed from UGC-SAP (DRS-I) program under the thrust area “Helminth Taxonomy” of the Department of Zoology were utilized for the present work. Senior author is also thankful to UGC for the award of a JRF (Endorsement no. 28943) and financial support to NA (F-4-10/2010 BSR).

References

Author Profile

Saroj Rajvanshi: Research Scholar (SRF-UGC) in Department of Zoology, University of Lucknow.

Prof. Nirupama Agrawal: Senior most Professor in Department of Zoology and Dean faculty of Science at University of Lucknow.

Manoj Kumar Upadhyay received the M.Sc. degrees in Biotechnology from CCS University Meerut (UP) India in 2004 and D. Phil degrees in Biotechnology from HNB Garhwal University Srinagar Garhwal, Uttarakhand, India in 2013. During Research work, he has published more than 20 research papers in pre reviewed scientific journals, developed protocols for Biochemical & molecular biology, submitted more than 60 genomic sequence data to GENBANK for academic purpose and research work published in form of book from Horizon Research Publishing USA. Presently Dr Upadhyay is working with Biotech Park, Lucknow from May, 2012 to till date as senior Scientist and actively involved in standardization of various protocol for Health, Agriculture and quality management system. Dr Upadhyay is also associated as Assessors with National Accreditation Board for testing and calibration Laboratories (NABL) Govt. of India for accrediting chemical and biological laboratories.