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Abstract: This paper discusses about the concepts of Minimum cost spanning tree and what happens if it is used in place of Steiner 
tree. We show that the MSTP is equivalent to a Steiner Tree Problem (STP) in an adequate layered graph. We also adapt the proposed 
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symmetric edge costs, we will focus on so-called directed formulations. 
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1. Introduction 
 

The Hop-constrained Minimum Spanning Tree Problem 
(HMSTP) is defined as follows:  
 
Given a graph G = (V,E) with node set V = {0, 1, . . . , n} 
and edge set E as well as a positive cost ce associated with 
each edge e of E and a natural number H, we wish to find a 
spanning tree T of the graph with minimum total cost and 
such that the unique path from a specified root node, node 0, 
to any other node has no more than H hops (edges).[1] 
Diameter-constrained Minimum Spanning 
 
Tree Problem (DMSTP) is defined as follows: given a graph 
G = (V,E) with node set V = {1, . . . , n} and edge set E as 
well as a positive cost ce associated with each edge e of E 
and a natural number D, we wish to find a spanning tree T of 
the graph with minimum total cost and such that the unique 
path from any node i to any node j has no more than D hops 
(edges).[2] 
 
 A single graph can have many different spanning trees. A 
minimum spanning tree (MST) or minimum weight 
spanning tree is then a spanning tree with weight less than or 
equal to the weight of every other spanning tree. Any 
undirected graph has a minimum spanning forest, which is a 
union of minimum spanning trees for its connected 
components. A spanning tree for that graph would be a 
subset of those paths that has no cycles but still connects to 
every house. There might be several spanning trees possible. 
A minimum spanning tree would be one with the lowest 
total cost. 
 
The DCMST problem in directed networks constructs the 
spanning tree T(s) rooted at s that has minimum total cost 
among all possible spanning trees rooted at s which have a 
maximum end-to-end delay less than or equal to a given 
delay constraint D. The same problem can be expressed as a 
decision problem as follows. 
 
Delay-Constrained Minimum Spanning Tree (DCMST) 
Problem: Given a directed network G = (V, E), a positive 
cost c(e) for each e Є E, a positive delay d(e) for each e Є E, 

a source node s Є V , a positive delay constraint D, and a 
positive value B, is there a spanning tree T(s) that satisfies: 
Cost (T(s)) ≤ B, 
Max _Delay (T(s)) ≤ Δ? 
 
Theorem 1 DCMST is NP-complete unless all link costs 
are equal. 
 
Proof: The DCMST problem in undirected networks 
(DCMST-undirected) is a restricted version of DCMST. 
DCMST-undirected is NP-complete and therefore DCMST 
is also NP-complete. [1] We propose a simple and efficient 
heuristic for the DCMST problem to avoid the exponentially 
growing execution times of the optimal solutions. We call it 
the bounded delay broadcasting (BDB) heuristic.  
 
1.1 Steinerized Minimum Spanning Tree Algorithm 
 
Minimum Spanning Tree T may not be a feasible solution 
for Steiner tree problem for minimal steiner points. Since 
some edges in T may have longer length. To make feasible 
solution we add steiner points in each edge, break them into 
smaller pieces each having certain length. Resulting tree is 
steinerized Minimum Spanning Tree. 
 
1.2 Possible Multiplicity  
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This figure1 shows there may be more than one minimum 
spanning tree in a graph. In the figure, the two trees below 
the graph are two possibilities of minimum spanning tree of 
the given graph. There may be several minimum spanning 
trees of the same weight having a minimum number of 
edges; in particular, if all the edge weights of a given graph 
are the same, then every spanning tree of that graph is 
minimum. If there are n vertices in the graph, then each tree 
has n-1 edges. 
 

1.3 Uniqueness  
 

If each edge has a distinct weight then there will be only 
one, unique minimum spanning tree. This can be proved by 
induction or contradiction. This generalizes to spanning 
forests as well. If the edge weights are not unique, only the 
(multi-)set of weights in minimum spanning trees is unique, 
that is the same for all minimum spanning trees. A proof of 
uniqueness by contradiction is as follows.  
 
1. Assume MST A is not unique. 
2. There is another spanning tree with equal weight, say 

MST B. 
3. Let e1 be an edge that is in A but not in B. 
4. As B is a MST, {e1}  B must contain a cycle C. 
5. Then B should include at least one edge e2 that is not in A 

and lies on C. 
6. Assume the weight of e1 is less than that of e2. 
7. Replace e2 with e1 in B yields the spanning tree {e1}  B 

- {e2} which has a smaller weight compared to B. 
8. Contradiction. As we assumed B is a MST but it is not. 
 
If the weight of e1 is larger than that of e2, a similar 
argument involving tree {e2}  A - {e1} also leads to a 
contradiction. Thus, we conclude that the assumption that 
there can be a second MST was false. 
 
1.4 Minimum-cost subgraph  
 
If the weights are positive, then a minimum spanning tree is 
in fact a minimum cost subgraph connecting all vertices, 
since subgraphs containing cycles necessarily have more 
total weight. 
 
1.5 Cycle Property
 
For any cycle C in the graph, if the weight of an edge e of C 
is larger than the weights of all other edges of C, then this 
edge cannot belong to an MST. Assuming the contrary, i.e. 
that e belongs to an MST T1, then deleting e will break T1 
into two subtrees with the two ends of e in different subtrees. 
The remainder of C reconnects the subtrees, hence there is 
an edge f of C with ends in different subtrees, i.e., it 
reconnects the subtrees into a tree T2 with weight less than 

that of T1, because the weight of f is less than the weight of 
e. 
1.6 Cut Property  

 
 
This figure2 shows the cut property of MSP. T is the only 
MST of the given graph. If S = {A,B,D,E}, thus V-S = 
{C,F}, then there are 3 possibilities of the edge across the 
cut(S,V-S), they are edges BC, EC, EF of the original graph. 
Then, e is one of the minimum-weight-edge for the cut, 
therefore S ∪ {e} is part of the MST T. For any cut C in the 
graph, if the weight of an edge e of C is strictly smaller than 
the weights of all other edges of C, then this edge belongs to 
all MSTs of the graph. To prove this, assume the contrary: in 
the figure at right, make edge BC (weight 6) part of the MST 
T instead of edge e (weight 4). Adding e to T will produce a 
cycle, while replacing BC with e would produce MST of 
smaller weight. Thus, a tree containing BC is not a MST, a 
contradiction that violates our assumption. By a similar 
argument, if more than one edge is of minimum weight 
across a cut, then each such edge is contained in a minimum 
spanning tree. 
 

1.7 Minimum-Cost Edge  
 
If the edge of a graph with the minimum cost e is unique, 
then this edge is included in any MST. Indeed, if e was not 
included in the MST, removing any of the (larger cost) 
edges in the cycle formed after adding e to the MST would 
yield a spanning tree of smaller weight. 
 
2. Algorithms
 

 There are now two algorithms commonly used Prim's 
algorithm and Kruskal's algorithm. All three are greedy 
algorithms that run in polynomial time, so the problem of 
finding such trees is in FP, and related decision problems 
such as determining whether a particular edge is in the MST 
or determining if the minimum total weight exceeds a 
certain value are in P. Another greedy algorithm not as 
commonly used is the reverse-delete algorithm, which is the 
reverse of Kruskal's algorithm. 
 
If the edge weights are integers, then deterministic 
algorithms are known that solve the problem inO(m + n) 
integer operations. In a comparison model, in which the only 
allowed operations on edge weights are pairwise 
comparisons, found a linear time randomized algorithm 
based on a combination of Borůvka's algorithm and the 
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reverse-delete algorithm. Whether the problem can be solved 
deterministically in linear time by a comparison-based 
algorithm remains an open question, however. The fastest 
non-randomized comparison-based algorithm with known 
complexity, by Bernard Chazelle, is based on the soft heap, 
an approximate priority queue. Its running time is O(m 
α(m,n)), where m is the number of edges, n is the number of 
vertices and α is the classical functional inverse of the 
Ackermann function. The function α grows extremely 
slowly, so that for all practical purposes it may be 
considered a constant no greater than 4; thus Chazelle's 
algorithm takes very close to linear time. Research has also 
considered parallel algorithms for the minimum spanning 
tree problem. With a linear number of processors it is 

possible to solve the problem in 

tree problem. With a linear number of processors it is 

time. 
Minimum Spanning Forest (MSF) algorithm for undirected 
weighted graphs. This algorithm leverages Prim’s algorithm 
in a parallel fashion, concurrently expanding several subsets 
of the computed MSF. PMA minimizes the communication 
among different processors by not constraining the local 
growth of a processor’s computed subtree. In effect, PMA 
achieves a scalability that previous approaches lacked. 
PMA, in practice, outperforms the previous state-of-the-art 
GPU-based MSF algorithm, while being several order of 
magnitude faster than sequential CPU-based algorithms. 
 
Other specialized algorithms have been designed for 
computing minimum spanning trees of a graph so large that 
most of it must be stored on disk at all times. They rely on 
efficient external storage sorting algorithms and on graph 
contraction techniques for reducing the graph's size 
efficiently. 
 
The problem can also be approached in a distributed manner. 
If each node is considered a computer and no node knows 
anything except its own connected links, one can still 
calculate the distributed minimum spanning tree [2]. 
 

3. Applications  
 
Minimum spanning trees have direct applications in the 
design of networks, including computer networks, 
telecommunications networks, transportation networks, 
water supply networks, and electrical grids (which they were 
first invented for, as mentioned above).They are invoked as 
subroutines in algorithms for other problems, including the 
Christofides algorithm for approximating the travelling 
salesman problem, approximating the multi-terminal 
minimum cut problem (which is equivalent in the single-
terminal case to the maximum flow problem), and 
approximating the minimum-cost weighted perfect 
matching.  
 
Other practical applications based on minimal spanning trees 
include: 
 Taxonomy, one of the earliest motivating applications.  
 Cluster analysis: clustering points in the plane, single-

linkage clustering (a method of hierarchical clustering), 
graph-theoretic clustering, and clustering gene expression 
data.  

 Constructing trees for broadcasting in computer networks.  
 Image registration and segmentation [see minimum 

spanning tree-based segmentation. 

 Curvilinear feature extraction in computer vision.  
 Handwriting recognition of mathematical expressions.  
 Circuit design: implementing efficient multiple constant 

multiplications, as used in finite impulse response filters.  
 Regionalisation of socio-geographic areas, the grouping of 

areas into homogeneous, contiguous regions.  
 Comparing ecotorxicology data.  
 Topological observability in power systems.  
 Measuring homogenity of two-dimensional materials.  
 Minimax process control.  
 
In pedagogical contexts, minimum spanning tree algorithms 
serve as a common introductory example of both graph 
algorithms and greedy algorithms due to their simplicity. 
 

4. Related Problems  
 
A related problem is the k-minimum spanning tree (k-MST), 
which is the tree that spans some subset of k vertices in the 
graph with minimum weight. A set of k-smallest spanning 
trees is a subset of k spanning trees (out of all possible 
spanning trees) such that no spanning tree outside the subset 
has smaller weight. (Note that this problem is unrelated to 
the k-minimum spanning tree.)The Euclidean minimum 
spanning tree is a spanning tree of a graph with edge weights 
corresponding to the Euclidean distance between vertices 
which are points in the plane (or space). 
 
The rectilinear minimum spanning tree is a spanning tree of 
a graph with edge weights corresponding to the rectilinear 
distance between vertices which are points in the plane (or 
space). In the distributed model, where each node is 
considered a computer and no node knows anything except 
its own connected links, one can consider distributed 
minimum spanning tree. Mathematical definition of the 
problem is the same but has different approaches for 
solution .The capacitated minimum spanning tree is a tree 
that has a marked node (origin, or root) and each of the 
subtrees attached to the node contains no more than a c 
nodes. c is called a tree capacity. Solving CMST optimally 
requires exponential time, but good heuristics such as Esau-
Williams and Sharma produce solutions close to optimal in 
polynomial time. The degree constrained minimum spanning 
tree is a minimum spanning tree in with each vertex is 
connected to no more than d other vertices, for some given 
number d. The cased = 2 is a special case of the travelling 
salesman problem, so the degree constrained minimum 
spanning tree is NP-hard in general. For directed graphs, the 
minimum spanning tree problem is called the Arborescence 
problem and can be solved in quadratic time using the Chu–
Liu/Edmonds algorithm. 
 
A maximum spanning tree is a spanning tree with weight 
greater than or equal to the weight of every other spanning 
tree. Such a tree can be found with algorithms such as Prim's 
or Kruskal's after multiplying the edge weights by -1 and 
solving the MST problem on the new graph. A path in the 
maximum spanning tree is the widest path in the graph 
between its two endpoints: among all possible paths, it 
maximizes the weight of the minimum-weight edge. 
Maximum spanning trees find applications in parsing 
algorithms for natural languages and in training algorithms 
for conditional random fields. The dynamic MST problem 
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concerns the update of a previously computed MST after an 
edge weight change in the original graph or the 
insertion/deletion of a vertex. [3] 
 

5. The Diameter Constrained Spanning Tree 
Problem

 
In this section we adapt the previous methods to a variation 
of the HMSTP, the Diameter constrained Spanning Tree 
problem (DMSTP). Given a prescribed graph G = (V,E) 
with node set V and edge set E as well as a positive cost ce 
associated with each edge e of E, we wish to find a minimal 
spanning tree with a bound D on the diameter of the tree, 
which is the maximum number of edges in any of its 
paths.[2] When D = 2 or 3, the problem is easy to solve. 
However, it is NP-Hard when D ≥ 4. As noted before, the 
DMSTP differs from the HMSTP in the sense that here we 
constrain the path between each pair of nodes while in the 
HMSTP; only the paths from the special node are 
constrained. This observation suggests that the DMSTP 
appears to be much more complex than the HMSTP. 
 
However, several approaches for the DMSTP (see, for 
instance, [2, 3, 4, 5]) have used the properties of tree centers 
in order to transform the DMSTP into special versions of the 
HMSTP. For instance, with respect to situations with 
parameter D even then, following center property proves to 
be very useful. 
 

6. Minimum bottleneck spanning tree  
 
A bottleneck edge is the highest weighted edge in a spanning 
tree. A spanning tree is a minimum bottleneck spanning tree 
(or MBST) if the graph does not contain a spanning tree 
with a smaller bottleneck edge weight. A MST is necessarily 
a MBST (provable by the cut property), but a MBST is not 
necessarily a MST. 
  
7. Conclusions

 
We formulated the problem as a DCMST problem in 
directed networks, and then we proved that this problem is 
NP-complete. We also proved that the graph acquired with 
the help of spanning tree is always better than the steiner 
trees. 
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