Abstract: This paper presents the Underwater Remotely Operated Vehicle (ROV) trainer or called it as the ROV Trainer for the educational purpose. Many underwater industries are involved in developing underwater robot in order to reduce human works as well as increase productivity, efficiency and monitoring. Therefore, the ROV was designed in order to replace the divers and reduce a risk to a diver itself. However, the major constraints to the ROV designed are understanding and knowledge the fundamental of the ROV design. Therefore, ROV Trainer is designed in order to give a basic knowledge and as a platform to test the control system of the ROV. ROV Trainer was a design based on maneuverability and performance of each component with minimum cost where the size of ROV can be varied based on user need. The Peripheral Interface Controller (PIC) is used to control the movement of this ROV either as manual control or autonomous control. The experiment carried out from this ROV Trainer such as buoyancy test, pressure test, measure thrust and controlling the ROV will be covered in ROV Trainer. This project will give many benefits for educational researcher, school educational kits and also related underwater industries by looking at ROV’s features with the needed minimum cost of implementation.

Keywords: ROV Trainer, buoyancy test, thrust measurement, pressure test, control strategy’s.

1. Introduction

In 2011, the National Oceanography Directorate (NOD) under Ministry of Science, Technology and Innovation (MOSTI) introduces the first competition for an underwater competition for primary school in Putrajaya Maritime Centre that called Underwater Remotely Operate Vehicle (UROVeC). NOD was established on November 2000 serves as the National Focal Point for the coordination of research, development and commercialization and all related activities of oceanography and marine science in Malaysia. In 2012 and 2013, these underwater competitions were introduced for ordinary secondary school and secondary school for majoring in technical, respectively. In 2013 this competition was held in World Ocean Week 2013 (WOW 13) All the manual to design a simple ROV with Four Degree of Freedom (4 DOF) provided by the technical committee from MOSTI. This competition was supported by many industries involves on underwater fields such as Royal Institute of Naval Architects (RINA), Institute of Marine Engineering, Science and Technology (IMarEST) and MTC Engineering.

2. ROV Trainer Kit

The product specialty is to modeling of Remotely Operated vehicle (ROV) with different size using Right Side of General equation of an Unmanned Underwater Vehicle. Application of ROV Trainer kit is an educational purpose for underwater application and can control by remote control or Autonomous Control, complete with Driver and Interfaces between ROV Trainer and Personal Computer

2.1 Product Application

All ROV Trainer Kit features for educational purposes and be an important tool for Modeling of Remotely Operated Vehicle based on thruster configuration.

2.2 Commercialization Potential

Educational and research activities for Secondary School, Poly-technique, University, private company, etc.

2.3 Solidwork Design

Figure 1 shows the ROV Trainer Kit design for early stage using solidworks software so that the size and configuration of components such as controller module, driver, frame and material will be used.
2.4 List of Experiment

The ROV Trainer Kit come out with a standard experiment kit with 10 experiments. This experiment also can be diverge to a part of the experiment. In this paper, also including a few examples of experiments will be conducted.

3. Mathematical Dynamic Modeling of ROV

The mapping matrix, \(L \) Thrust position as shown in Figure 3. Equation 1 is the mathematical dynamic of motion for Unmanned Underwater Vehicle (UUV) given by [1 -3].

\[
m\dot{v} + C(v)v + D(v)v + g(\eta) = B(v)u \quad (1)
\]

where, \(m \) is the 6 x 6 inertia matrix including hydrodynamic added mass.

\(C(v) \) is the Matrix of Coriolis and centripetal forces.

\(D(v) \) is the Hydrodynamic damping matrix.

\(g(\eta) \) is the Vector of restoring forces and moments.

\(B(v) \) is the 6 x 3 control matrix.

3.1 Forces and Torque Vector

By measuring the positions of the motors as shown on Figure 3, a layout of the thrusters depicting their respective distances to the vehicle’s centre of gravity was attained based on was developed by UTeRG Group Research can be seen in Figure 3 [4 – 6]. From Figure 3, the mapping matrix, \(L \), for the ROV is given to a good approximation by,

\[
L = \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & L3 & -L3 \\
L1 & -L1 & L4 & -L4 \\
L2 & -L2 & L5 & -L5 \\
\end{bmatrix} \quad (2)
\]

While the thrust vector is given by,

\[
U = \begin{bmatrix}
T1 \\
T2 \\
T3 \\
T4 \\
\end{bmatrix} \quad (3)
\]

where, \(T1, T2, T3, T4 \) represent the thrusts of the portside, starboard, bow and stern motors respectively. In equation 3, the first three rows signify whether or not a particular motor effects on the movement of the vehicle along the \(x, y \) and \(z \) directions. For instance, in the first row, the ones in the first two columns indicated that the horizontal motors are responsible for surge. The last three rows of the mapping matrix are the vertical motors affecting the heave and pitch movements of the vehicle.

Figure 1: ROV Trainer Kit using Solidworks

Figure 2: List of Experiment

Experiment 1: Buoyancy Test
Experiment 2: Thrust Measurement
Experiment 3: Thrust Operation (Manual Controller)
Experiment 4: Ballast Tank Operation (Manual Controller and Filling and Draining Performance)
Experiment 5: Depth Sensor Testing
Experiment 6: Design and Development of Auto Depth Control of Remotely Operated Vehicle (ROV) using Thruster System
Experiment 7: Design and Development of Auto Depth Control of Remotely Operated Vehicle (ROV) using Ballast Tank System
Experiment 8: Interfacing with maxbox 2000/2000C (Thruster)
Experiment 9: Interfacing with maxbox 2000/2000C (Pressure Sensor)
Experiment 10: ROV Design

Stage 1 - Secondary School/ Polytechnic School
Stage 2 - Polytechnic Institute
Stage 3 - Degree level
matrix denote the distances from the centre of gravity to the thrusters. These values are either positive or negative corresponding to anticlockwise or clockwise moments respectively. The moments produced are responsible for affecting the vehicle’s attitude. As can be seen in the fifth row of the mapping matrix, the two vertical motors do not only contribute to pitch, but also to the two horizontal motors [7-8]. This implies that, when the vehicle is surging either forwards or backwards, the horizontal motors will affect the pitch of the vehicle. However, when performing underwater manoeuvres, this effect was not observed. This implies that the contribution to pitch by the horizontal motors is not significant. This is most likely attributable to the passive pitch control system. Each vertical motor observed in the fifth row is in fact an equidistant from the centre of gravity [9]. Consequently, applying equal forces to these motors when diving, surfacing or hovering will maintain the vehicle in a reasonably horizontal posture.

4. Results

Figure 4 (a) shows the actual ROV Trainer Kit. Two sample of ROV also including in this Trainer Kits for shows different set of thruster mapping as shown in Figure 4 (b) and (c). The example of experiment can be done by this ROV kits as depicted in Appendix. This ROV Kits comes with manual for experiment as described where at least 10 experiments can be done as shown in Figure 5.

5. Conclusion

The Underwater Remotely Operated Vehicle (ROV) trainer or called it as the ROV Trainer for educational purpose are successful design. This ROV Trainer is designed in order to give a basic knowledge and as a platform to test the control system of the ROV. ROV Trainer was a design based on maneuverability and performance of each component with minimum cost where the size of ROV can be varied based on user needed. This project will give much benefit for educational researchers, school educational kits and also related underwater industries by looking at ROV’s features with the needed minimum cost of implementation.

6. Acknowledgement

We wish to express our gratitude to honorable University, Universiti Teknikal Malaysia Melaka (UTeM) especially for Underwater Technology Research Group (UTeRG) and Faculty of Electrical Engineering for give the financial as well as moral support for complete this project successfully. Furthermore, we wish to express our appreciation to final year students Faizul Izwan Ibrahim and Lee Dai Cong, who contribute to the development of this ROV Trainer Kit.

References

Author Profile

Mohd Shahrieelel b Mohd Aras is a lecturer at Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka UTeM. He currently pursues his PhD in Control and Automation, Faculty of Electrical Engineering, Universiti Teknology Malaysia. His current research is focusing on control system design of underwater technology. His primary interests related to nonlinear underwater robotics and Artificial Intelligence.

Fadilah Binti Abdul Azis is a lecturer of Mechatronics Department in Universiti Teknikal Malaysia Melaka (UTeM). She has a Bachelor of Mechatronics Engineering (Hons) from International Islamic University Malaysia (IIUM) and a MSc in Mechatronics Engineering from University of Siegen, Germany. Her research interest includes in the Emerging Technology focus areas such as Underwater Technology and Smart Material Structures. She is currently working on the development of underwater vehicle for underwater.

Appendix

Example of Experiment 1 and 2
Experiment 1: Buoyancy Test
Objectives:
To understand the concepts of buoyancy force.
To measure the buoyancy force.

Theoretical:
Buoyancy is the tendency of objects immersed in water either to be floated or sink. If the object weight is more than the weight of water displaced, it will more tend to submerge and vice versa [6]. If the displaced water is the same, the object it has equal tendency to float as it does sink. The buoyancy has been classified into three which is positive buoyancy, neutral buoyancy and negative buoyancy as shown in Figure 1.

Figure 1: Classification of Buoyancy State

Positive Buoyancy -The conditions where the weight and the buoyancy force relationship of the object which tend to be floating on the surface of the fluid.

Figure 2: Positive Buoyancy

Neutral Buoyancy - The condition where the relationship of weight and the buoyancy force of the object tended to neither

Volume 3 Issue 5, May 2014
www.ijsr.net
sink nor rise in a fluid. The neutral buoyancy occurs when the object weight is equal to the fluid it displaced.

Figure 3: Neutral buoyancy

Negative Buoyancy - The condition where the weight is greater than the buoyancy force of the object in which the objects will be more tend to submerge to the bottom of the fluid. The object has negative buoyancy to immerse in the fluid and there is no air inside the tank.

Figure 4: Negative Buoyancy

Formulation (Archimedes Principle)

Archimedes Principle: “When a solid body is partially or completely immersed in water, the apparent loss in weight will be equal to the weight of the displaced liquid” [7]. The buoyancy concept is calculated when the force is pushing up is different than the force pushing down to the object in the fluid. Formula for Density of immersed object relative to the density of the fluid object is immersed in:

Relative Density = \(\frac{\text{Weight}}{\text{Weight - Apparent Immersed Weight}} \)

Archimedes' Principle

the buoyant force is equal to the weight of the displaced water

\[
F_B = F_2 - F_1 \quad (1.1)
\]

\[
P = \rho gh_1 \quad (1.3)
\]

\[
F_1 = \rho gh_1 A \quad (1.4)
\]

\[
P = \rho gh_2 \quad (1.5)
\]

\[
F_2 = \rho gh_2 A \quad (1.6)
\]

\[
F_B = \rho gh_2 A - \rho gh_1 A = \rho g A \Delta h \quad (1.7)
\]

Where,

\[
h = h_2 - h_1 \quad (1.9)
\]

\[
F_B = \rho gh A \quad (1.10)
\]

Where,

\[
V = Ah \quad (1.11)
\]

\[
F_B = \rho gV \quad (1.12)
\]

\[
F_B = PA = \rho ghA \quad (1.13)
\]

Apply the density equation:

\[
\rho = \frac{m}{V} \quad (1.14)
\]

So the general equation for buoyant force:

\[
F_B = \rho V g \quad (1.15)
\]

Where,

\[
P = \text{pressure} \ [\text{kPa}]
\]

\[
A = \text{area} \ [\text{m}^2]
\]

\[
\rho = \text{density of object} \ [\text{kg m}^{-3}]
\]

\[
g = \text{acceleration of gravity} \ [\text{m s}^{-2}]
\]

\[
h = \text{height} \ [\text{m}]
\]

Apparatus:

i. Aluminium plate,

ii. Small tank

iii. Measuring Tape

iv. Weighting Machine.

v. Weighing 5g
Procedure:

1) Measure the weight of aluminum plate and determine the density of aluminium on Table 1 in appendix.
2) Measure the size of aluminum plate. And use the formula given to calculate the size of float so that the
 aluminium will be slightly positive buoyancy between (90 to 95 %).
3) Tape the determined float by calculation to aluminum plate and testing into small tank.
4) Put the weight into the aluminum plate (Increased the weight of weighing plate 5g and observed the aluminum plate position) until the aluminum plate will be neutral buoyancy.
5) Observed and recorded the data.

Appendix - Table 1: Density Table

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>DENSITY (G/CM3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR</td>
<td>0.0043</td>
</tr>
<tr>
<td>WOOD</td>
<td>0.85</td>
</tr>
<tr>
<td>WATER</td>
<td>1.00</td>
</tr>
<tr>
<td>ICE</td>
<td>0.93</td>
</tr>
<tr>
<td>ALUMINUM</td>
<td>2.7</td>
</tr>
<tr>
<td>LEAD</td>
<td>11.3</td>
</tr>
<tr>
<td>GOLD</td>
<td>19.3</td>
</tr>
<tr>
<td>ETHANOL</td>
<td>0.74</td>
</tr>
<tr>
<td>METHANOL</td>
<td>0.79</td>
</tr>
</tbody>
</table>

The density of surface seawater ranges from about 1,020 to
1,029 kgm$^{-3}$, depending on the temperature and salinity.
Deep in the ocean, under high pressure, seawater can reach a
density of 1,050 kgm$^{-3}$ or higher. Seawater pH is limited to
the range 7.5 to 8.4. The speed of sound in seawater is about
1,500 metres/second, and varies with water temperature,
salinity, and pressure.

Experiment 2: Thrust Measurement

Objectives:
• To measure thrust for different types of propeller.
• To study the effect of propeller design to thrust.

Theory:
A thrusters is an electromechanical device equipped with a
motor and propeller that generates thrust to push an
Underwater Vehicle as shown in Figure 1. Thrusters are
generally propellers driven by electrical DC motors [4].
Therefore, thrust force is simultaneously affected by motor
model, propeller design, and hydrodynamic effects. For this
experiment focused more on propeller design.

Equation 1 is to measure a power that comes out from
thrusters (Thrust is a reaction force described quantitatively
by Newtonn’s, second order and third laws. When a system
expels or accelerates mass in one direction the accelerated
mass will cause a proportional but opposite force on that
system as shown in Figure 2) and speed of propeller.

\[
\text{Power (Watts)} = \text{thrust (Newton)} \times \text{speed (ms$^{-1}$)} \quad (1)
\]

Propellers are manufactured having from 2 up to 8 blades.
The fewer the number of blades, the higher the propeller
efficiency. However, the total thrust is divided on the blades
which means that ships with large power requirements and
heavy loaded propeller need more blades. Fewer blades also
introduce more vibration and therefore submarines used in
warfare usually have up to 8 blades. Three blades propeller
are the most common for normal operating small ROV

Apparatus:
i. Thruster
ii. Thrust Testing
iii. Propeller (4 types of propeller)

Procedure:
1) Prepared the thruster and make sure the condition is
ready for launch as shown in Figure 2.

Figure 1: Completed thrusters -propeller with 3 blades

Figure 2: Thrust Measurement
2) Make sure the thrust testing should be set to zero before start the thruster on.
3) Turn on the thruster with right direction (vertical motion) and recorded the thrust obtained and repeat 5 times.
4) Change the type of propeller and repeat again 1 -3. Also consider change of type of motor.
5) Recorded all data in Table.

<table>
<thead>
<tr>
<th>No</th>
<th>Type of Propeller</th>
<th>Thrust on surface (N)</th>
<th>Thrust on underwater (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3Blades propeller plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3 Blades propeller aluminium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4 Blades propeller plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2 Blades propeller plastic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>