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Abstract: Variational methods and their applications are considered in the solution of problems involving vibrations of thin shell 
segments consisting of partly positive and partly negative Gaussian curvature parts. The lower part of the spectrum of these shells when 
the boundary conditions exclude pure bending is investigated. The results obtained by using the Raleigh-Ritz approximation are 
compared with those obtained by applying the Shooting Method and it is observed that there is good agreement. Results obtained also 
indicate that the variational method used in the investigation gave large and less accurate results for the lowest frequency parameter 
while increasing the number of coordinate elements to two gave more accurate values. However, it is shown that increasing the number 
of elements has the disadvantage of increasing the computations needed to solve the problem. 
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Nomenclature 
 
��, �� Lame’s coefficients 
��, �� Orthogonal curvilinear coordinates 
��, �� Linear operators 
� Young’s modulus  
�� , � = 12,3 Momentum terms 
ℎ Dimensionless thickness 
� Poisson’s ratio 
� Density 
� Acceleration due to gravity  
� Small geometric parameter 
� Frequency parameter 
� Number of waves in circular direction 
��, �� Radii of convergence 
� Arc length 
� Angle in the circular direction 
Λ Eigenvalue 
Λ� Smallest eigenvalue 
�, �, � Coordinate axes 
��, ��, � Stress projections 
��(��, ��) Displacement projections 
� Natural frequency 
 
1. Introduction 
 
A shell is a body bounded by two curved surfaces, where the 
distance between the surfaces is small in comparison with 
other body dimensions [24]. Shell structures have been 
constructed since ancient times. The Hagia Sophia in Istanbul 
and the Pantheon in Rome are well-known examples. Shells 
are very efficient in carrying loads acting perpendicular to 
their surface by in-plane membrane stresses [14]. Shell 
structures enjoy the unique position of having extremely high 
aesthetic value in various architectural designs. The 
understanding of the behaviour of shell structures enables 
designers or stress analysts to verify the accuracy of 
numerical structural analysis results for such structures [24].  
 
Shells have a wide range of applications and uses in 
engineering. Cylindrical shells find extensive use in tanks, 
boiler gas, water conduits and aeroplane structures. Examples 
of shell structures in civil and architectural engineering are 
large-span roofs, water tanks, containment shells of nuclear 

power plants and concrete arch domes [24]. In mechanical 
engineering shell structures find use in piping systems, 
turbine disks and pressure vessels technology while in 
aeronautical and marine engineering shell forms are used in 
the construction of missiles, aircrafts, rockets, ships and 
submarines [24]. In the field of biomechanics shells are found 
in various biological forms such as the skull and eye, plant 
and animal shapes. 
 
Variational methods, also known as calculus of variations or 
energy methods are a branch of mathematics that involves 
finding stationary values of functionals. In other words 
calculus of variations is a field of mathematical analysis that 
deals with maximizing or minimizing functionals, which are 
mappings from a set of functions to the real numbers. A 
functional is defined as an integral that has a specific value 
for each function from domain substituted into the functional, 
or a functional is an integral that implicitly contains 
differential equations that defines a problem. 
 
Variational solutions of shell problems are very useful when 
the desired result depends on overall rather than local 
conditions, for example in buckling and vibration problems 
or general magnitudes of deflections under transverse loads. 
In particular, an approximate solution of a differential 
equation can be obtained by using the Raleigh-Ritz method, 
which involves substituting an approximating function into 
the variational function, making sure the approximating 
function satisfies the boundary conditions. 
 
Several studies have recently been carried out involving thin 
shell theory. Among them are Timoshenko [21], Ventsel [24] 
and a host of many others. Due to their usefulness in the real 
world, shells deserve to be studied diligently and carrying out 
researches about shells is the best way to it. 
 
Other researchers of note who have studied shells include 
Masashi [13] and Aginam [2] et al, who have applied 
variational methods to analyse thin elastic shells with finite 
rotations and isotropic thin rectangular plates respectively. 
Also, Avramov & Brelavski [4] studied on vibrations of 
shells rectangular in the horizontal projection with two freely 
supported edges. 
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Another researcher who has extensively researched on shells 
is Petrov [19]. Some of his works include the investigation of 
stability and low-frequency oscillations of thin shells with 
entirely or partially negative Gaussian curvature among many 
others. Refer to [15, 16, 17, 18, 20] for more of his research 
on shells. 
 
2. Problem Formulation 
 
Equations of motion for the vibration analysis of shells may 
be derived as a simple extension of the static case by adding 
the inertia forces to body forces and body moment terms that 
result from accelerations of the mass of the shell according to 
the D'Alambert’s principle. A detailed treatment of shell 
theory may be found in [10, 19]. 
 
Consider the two dimensional case of shell theory as 
presented in [5, 10, 19, 23]: 
 

∑ (�� �
��� ��� +  ���)�� +  �� = 0, � = 1,2,3           (1) 

 
where ��(��, ��) are the projections of the shear, ���(��, ��) 
and ���(��, ��) are linear differential operators, �� and 
��  are orthogonal coordinates on the middle surface, �� are 
stress projections and � is a small geometric parameter given 
by; 
 

�� = ��

����(����) ,  

 
where � is Poisson's ratio and h represents the shell thickness 
and is assumed to be very much smaller when compared with 
the characteristic dimension R. Refer to [5, 10, 23] for a more 
detailed treatment of the operators , ���(��, ��) and 
���(��, ��). 
 
The load projections ��, are proportional to the eigenvalue Λ, 
that is, �� = −Λ��, where Λ = ρ������� where � is the 
unknown frequency parameter. Also Lame’s coefficients and 
radii of convergence are expressed as 
 
 �� = 1 , �� = �(�),  
�� = ��

��
, �� = ��

��� �
 . 

 
The coefficients of system (1) depend only on � and 
separation of variables yields ��(�, �) = ��(�)����and 
consequently leads to a system of ordinary equations of the 
form � ��

��
= A(�, �, �, Λ)� where 

 
 �� = (��, ��,��, �′� , �′′�, ��, ��, S). See [15, 17, 19, 20]. 
 
If � � 0, equation (1) is a system of eighth order and has four 
boundary effect integrals at each edge of the shell; 
����(��)� = 0, � = 1,2. We also note from Fig 1.1 that �� 
changes sign at the point �∗ and 
 
��(�) � 0 at  �� ≤ � < �∗, ��(�) < 0 at �∗ ≤ � < �� , 
��(�) � 0 and  ��

��(�∗)=0. 
 

 
Figure 1: Shell of partly negative and partly positive 

Gaussian curvature 
 
The stress-strain relations and the equilibrium equations are 
as follows: 
 

 

��� 
��

+ �� 
� 

(�� − ��) + � 
�

� = ��

��
�� − �ℎ��

�� 
��

+ 2 �� 
� 

� − � 
�

�� = ��

��
�� − �ℎ��

�� 
� 

� +  � 
�

� − � 
��

= �� − ���
��

� 
�� 

��
�

� −  � 
�

� = �(���)��
��

�� 
��

+ �� 
�� 

= ��

��
�� − �ℎ��

 �� 
��

− � 
��

= �� − ���
�� �

�
�
�
�
�

�
�
�
�
�

          (2) 

 
For shells of negative Gaussian curvature we have 
 
 � = ℎ��

� 
 
and 
 
� =  ℎ

�
�  

 
and the waves cover the whole middle surface. For shells of 
positive Gaussian curvature � = 1 and the waves are located 
near a weak parallel. It is thus important to pay more 
attention to the concave part of the shell. 
 
Definition 1: A Sturm-Liouville is a real second-order 
differential equation of the form; 
 

�
��

��(�)
��
��

� − �(�)� + ��(�)� = 0 (�) 
 
where y is a function of the variable x on some interval [�, �] 
and y and x satisfy the following boundary conditions: 
 

 ���(�) + ����(�) = 0
���(�) + ����(�) = 0 �                           (4) 
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where ��, �� , �� and �� are none-zero constants. The value of 
� if it exists, is called its eigenvalue of the problem, and the 
corresponding solutions of such a � are called eigenfunctions 
of the Sturm-Liouville problem. 
 
Definition 2: A functional � is a mapping from a vector 
space X into its underlying scalar field R, i.e. �: � ⟶ ℝ.  
 
Definition 3: A Euler-Lagrange equation is a differential 
equation whose solutions are the functions for which a given 
functional is stationary. If J is defined by an integral of the 
form � = � �(�, �, � � )��, where �� = ��

��
 , then � has a 

stationary value if the following Euler-Lagrange differential 
equation is satisfied:  
 

��
��

− �
��

���
���

� = 0.                                (5) 
 

The form (5) is also referred to as the variational form of the 
differential equation.\ 
 
Consider J= � �(�, ��, �)����

��
 . It can easily be shown that 

functional that possesses the Euler-Lagrange equation of the 
form that is needed for the system (3) and (4) is given by 
� = � (�(��)� −  ��� + ��(�)��)��.�

�  If �(�) of the Sturm-
Liouville equation (3), then it must make stationary the 
integral � (�(��)� +  ���)�

� �� subject to the constraint 
� = � �(�)���

� �� = ��������. The value of the constant � 
is irrelevant to the variational formulation and is taken to be 
unity in most cases. 
 
3. Methodology 
 
The Raleigh-Ritz Method 
 
The Raleigh-Ritz method makes use of an approximating 
function which is substituted into the variational form of the 
problem. It must be borne in mind that the approximating 
function should satisfy the boundary conditions of the 
problem under consideration. The major utility of the 
Raleigh-Ritz method lies in approximating lies in 
approximating a solution rather than evaluating it exactly and 
this feature is very useful for eigenvalue problems. 
 
In the Raleigh-Ritz approximation, a finite set of � linearly 
independent functions {�� , ��, … , ��} and a linear 
combination � = ∑ ��

�
��� ��(�) of the functions is then 

formed when each function ��(�) satisfies the boundary 
conditions of of the Sturm-Liouville eigenvalue problem and 
the stationary values of � are determined by setting and 
solving ��

���
= 0 where � = 1,2, … , �.

 
If �(�) is a solution of the Sturm-Liouville equation, then � 
vanishes and; 
 

� =
� (�(��)� +  ���)�

�

� ����
� ��

�� 

 

= �{�}
�{�}

                                              (6) 

 
It must be noted here that since the eigenvalues �� of the 
Sturm-Liouville equation are the stationary values of �{�}

�{�}
 , 

then any evaluation of this ratio yields a value that lies 
between the lowest and highest eigenvalues of the 
corresponding Sturm-Liouville equation, that is, 
 
 ���� ≤ �

�
≤ ���� ,  

 
where, depending on the equation under consideration, either, 
���� is finite or ����  is finite. As an example, for an 
equation with a finite lowest eigenvalue ��, any evaluation of 
�
�

 provides an upper bound on ��. 
 
The asymptotic solution of the system of equations (2) yields 
the following Sturm-Liouville differential equation  
  

�
��

��� ��
��

� + �
�

� = 0                           (7) 
 
where �(�) = ��� 

� ��

��(�����)�, �(�) = � ����

�
− ����

��(����)�
. Refer to 

[19]. 
 
It is helpful to mention here that the spectrum of equation (3) 
when taken together with the boundary conditions (4) is 
discrete and the eigenvalues are positive if the following 
conditions are satisfied: 
(a) �(�) ≥ 0, �� is a positive constant, 
(b) �(�) ≥ 0, 
(c) �(�) lies between certain positive numbers �� and ��,  
(d) ��, ��, ��, �� are non-zero and at least of the constants �� 
and �� are non-zero.  
 
The smallest eigenvalue � is equal to the minimum of the 
functional; 
 

� [�
�  �(�)(��)� +  �(�)��]�� + ��

��
�(�)�� + �� 

��
�(�)�� (8) 

 
under the condition � �(�)[�(�)]��

� �� = 1              (9) 
 
If �� =  �� = 0, the terms containing �� and �� vanish and 
�(�) satisfies condition (9) together with �(�) = �(�) = 0. 
Now considering equation (8), it is observed that condition 
(a) above is not satisfied at � = �∗ in accordance with 
�(�∗) = 0. However there is a discrete spectrum of (7) 
together with (3) even when �(�) = 0 provided the improper 
integral 
 

 � = � ���
�(�)

�
� ��                                        (10) 

 
converges and �(�) ≈ �(� − �∗)

�
�. 

Therefore � = � ���∗

�(�)�(�)
�

� �� ≈ �
��

(� − �∗)
�
� < 0. 

Substituting for �(�), the Sturm-Liouville equation (7) is 
transformed to; 
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�
��

��� ��
��

� − ����

��(����)��
� + �����

��
� = 0             (11) 

 
where �(�) = ��, �(�) = ����

��(����)��
 and �(�) = �����

��
. 

 
The functional of the Sturm-Liouville equation (11) is; 
 

� = � (−�(��)� −  ��� + Λ���)���
�                   (12) 

 
Thus �(�, ��, �) = −�(��)� −  ��� + Λ��� 
 
Now  
 
�� 
��

= � ����

�
� − ����

��(����)��
 , �� 

���
= −2���� and  

 
�

��
� �� 

���� = −2 �
��

(����).  
 
It can easily be shown that the Euler-Lagrange equation  
 
��
��

− �
��

� ��
���

� = 0 is satisfied, hence �(�, ��, �) is a 
variational function of the Sturm-Liouville equation (11).  
 
The functional � is given by  
 

� = �
Λ ����

�
(��)� − ��(��)� +

��ℎ�

12(1 − ��)��
��

��

�∗
��. 

 
Hence equation (6) implies that the smallest eigenvalue, 

 Λ� is equal to the minimum of 
� ������

�
� ��������

�∗

� �����
�∗ ��

.  

Therefore  

Λ� = min
�, �  

� ��������
� ����

����������
�������

�∗

�� � ���
��

��
�∗ ��

           (13) 

 
Rearranging (3) gives 

 Λ� =  min
�, �  ��

����
+ min

�, �
������

��(����)��
          (14) 

 
where �� = � [��(��)�]����

�∗ , �� = � ��

��
����

�∗  and 
 
 �� = � ����

��
����

�∗ . 
 
The minimum is evaluated for all �(�) satisfying the 
boundary conditions �(�∗) = �(��) = 0. Differentiating (14) 
with respect to � and equating the result to zero, gives 
 

�∗ = ����������
����

�
�
�. Now substituting for �∗ for � in (14) 

gives Λ�
∗ = �

�
� ��

�[����]
�

�
� min

�  ��

�
���

�
�

��
. 

 
For our Sturm-Liouville problem (11), we let the 
approximating function be; 
 

�(�) = �(� − �∗)(� − ��) + � sin �(���∗)
����

.             (15) 

We note here that the approximating function satisfies the 
boundary conditions �(�∗) = �(��) = 0. Now letting �∗ = 0 
and �� = �

�
 gives 

 
�(�) = � �2� − �

�
� + � sin 2� . We use this equation for y to 

get an equation for the functional � as given by (12).  
 
4. Results and Discussion 
 
For the functional � we let ℎ = 0.01, � = 5 and ϑ = 0.5 to 
get  
 
� = 17.0781��Λ − 0.06759�� − 0.8935�� − 52.869��Λ

+ 0.636�� − 0.4�� + 41.009��Λ
− 0.388�� − 2.211�� 

 
We now take partial derivatives of � with respect to � and � 
in turn, and equate to zero. As a result we obtain two 
simultaneous equations which we solve to get Λ = 0.0276 or 
Λ = 57.349. We discard the larger value because we are 
looking for the smallest frequency parameter. The above 
procedure is repeated for the cases m=6, 7, 8,9,10 and a 
comparison is made with results obtained by using the 
Shooting method, denoted as Λ�. We follow the same 
procedure for � = 9,10,11,12,13,14 when ℎ = 0.003.  
 
The values obtained by using two coordinate elements are 
denoted as Λ��while results obtained using one coordinate 
element �(�) = �(� − �∗)(� − ��) are denoted Λ��. 
 

Table 1: Results for ℎ = 0.01 
� 5 6 7 8 9 10 
Λ� 0.0437 0.0341 0.0307 0.0306 0.0328 0.0342 
Λ��  0.0563 0.0445 0.0419 0.0464 0.0477 0.0513 
Λ��  0.0276 0.0288 0.0396 0.0421 0.0451 0.0493 
 

Table 2: Results for ℎ = 0.003 
m 9 10 11 12 13 14 
Λ� 0.0153 0.0139 0.0135 0.0136 0.0141 0.0148 
Λ��  0.0199 0.0188 0.0192 0.0209 0.0240 0.0286 
Λ��  0.0130 0.0141 0.0162 0.0190 0.0229 0.0279 
 
5. Conclusion 
 
The variational method gives values for the lowest frequency 
parameter which are comparable to those obtained by 
applying the Shooting method. Increasing the number of 
coordinate elements to two gave lower values, thereby 
increasing the accuracy of the method. However increasing 
the number of coordinate elements also implied increasing 
the number of computations required to solve the problem. 
Nevertheless, the variational or energy method has the 
advantage of consuming much less computer time to evaluate 
the frequencies when compared to the Shooting method. 
 
We conclude that the variational method is an effective 
method for dynamics or stability investigation of rather 
complicated structures such as shells and beams. Even 
though the results obtained are less accurate when compared 

Paper ID: 020131238 1922



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 5, May 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY

to proper numerical ones, the variational method is desirable 
because high accuracy would demand huge computer time. 
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