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Abstract: In the present work we have developed the numerical solutions for various partial differential equations such as 
electromagnetic problems using finite difference method. The electromagnetic problems under consideration are (a) Transmission lines 
and (b) waveguide. In case of transmission lines problem the governing equation is Laplace equation. We have computed the 
characteristic impedance of shielded double micro-strip transmission lines. The computed values of the characteristic impedance are 
comparable with the theoretical values. In the waveguide problem where the governing equation is Helmholtz equation, we have 
computed the cut off wave number kc for the TM modes in the rectangular waveguide. The cut off wave number kc for the lowest TM 
modes obtained were compared with theoretical values, and they were found to be satisfactory. All the implementations have done by 
using Matlab. 
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1. Introduction 
 
Finite difference method is currently being widely used for 
solving the partial differential equations. The finite difference 
method is a choice to numerically solve the elliptic partial 
differential equations [1]. In the present paper, finite 
difference method has been used to solve the Laplace and 
Helmholtz equations. Laplace's equation is a second-
order partial differential equation. The application of Laplace 
equation and Helmholtz equation is to determine of 
electromagnetic fields in transmission line and waveguide 
problems. Transmission line is a means of transfer of 
information from one point to another. The distinguishing 
feature of most transmission lines is that they have uniform 
cross sectional dimensions along their length, giving them 
uniform impedance, called the characteristic impedance, to 
prevent reflections [2-4]. In the transmission lines problem 
we are computing the characteristic impedance of the 
shielded double-strip transmission lines. In the waveguide 
problem the cut off wave number kc for the lowest 
rectangular waveguide modes have been computed. 
 
1.2 Transmission Lines 
 
Transmission line is a specialized cable, which is designed to 
carry alternating current of radio frequency. These are guided 
conducting structures that are used in power distribution at 
low frequencies in communications and computer networks 
at higher frequencies. It is used to connect a source to a load. 
The source may be transmitter and the load may be a 
receiver. There are many types of transmission lines, for 
example micro-strip lines, two-wire parallel lines, coaxial 

lines, planer lines, optical fibre [5]. Transmission lines have 
wide applications such as distributing cable television 
signals, computer network connections and connecting radio 
transmitters and receivers with their antennas. Transmission 
line elements are integral parts of antenna. Transmission line 
is not only used to transmit energy from one place to another 
it is also used as a circuit element like inductor, resonant 
circuit, capacitor, filter, transformer and insulator at high 
frequencies. It is a distributed parameter network and is 
described by parameters distributed throughout its length [6]. 
The length of a transmission line is of utmost importance in 
transmission line analysis. 
 
2. Characteristic Impedance of Transmission 

Line 
 
The characteristic impedance of a transmission line is the 
ratio of the amplitudes of voltage and current of a wave 
travelling along the line. It is usually denoted by z0. It is 
independent of length and is determined by geometry of 
transmission line. The finite difference techniques are suited 
for computing the characteristic impedance. The 
characteristic impedance Z0 and phase velocity u of the line 
are defined as   

 
C
LZ =0

   and    
CL

u 1
=

                            (1) 

Where L and C are the inductance and capacitance per unit 
length respectively. For the non magnetic dielectric medium 
the characteristic impedance Z00 and phase velocity u0 with 
the dielectric removed are given by 
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Where C0 is the capacitance per unit length without 
dielectric. Combining equation (1) and (2) yields. 
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Where 

effε  is the effective dielectric constant. Thus to find Z0 

for an inhomogeneous medium, requires calculating the 
capacitance per unit length of the structure, with and without 
the dielectric substrate.  

dV
QC 4

=
                                                           (5) 

Where Vd is the potential difference between inner and outer 
conductors.  Now, the problem is reduced to finding the 
charge per unit length Q. We use the finite difference 
technique to compute the characteristic impedance phase 
velocity and attenuation of several transmission lines like as 
polygon lines, shielded strip lines, micro strip lines, coaxial 
lines and rectangular lines. Here we are considering the 
micro strip line. The geometry in the figure is given below 
 

 
Figure 1: (a) Shielded double-strip line with partial dielectric 
support; (b) problem in (a) simplified by making full use of 

symmetry [7] 
 
Algorithm [7]: 
• First calculate potential V without dielectric space. 
• Charge Q0 without dielectric medium. 
• Calculate 

dV
QC 0

0

4
=

 

• The potential V with the dielectric space. 
• Charge Q with the dielectric medium. 
• Calculate 

dV
QC 4

=

• Finally calculate 
00

0

1
CCu

Z =

Where 
0u  is the speed of light. 

 
3. Helmholtz Equation 
 
The Helmholtz equation is an elliptic partial differential 
equation given by 

                                 022 =+∇ uku                                      (6) 
 
Where 2∇ a Laplace operator, k is is the wave number and u 
is a scalar function. The Helmholtz equation often arises in 
the study of physical problems involving partial differential 
equations in both space and time. In this section, we are 
computing the cut off wave number kc for TM (Transverse 
Magnetic) mode in the rectangular waveguide by using 
Helmholtz equation.  
 
3.1 Wave Guides 
 
Wave-guide is the most efficient way to transfer electro-
magnetic energy. It is used to transmit the electrical waves at 
microwave frequency. A wave-guide is a structure that guides 
waves, such as electromagnetic waves. Wave guides are 
essentially coaxial lines without centre conductors. They are 
constructed from conductive material and may be 
rectangular, circular or elliptical in shape [6].  

Figure 2: Rectangular waveguide 
 
The solution of waveguide problems is well suited for finite 
difference schemes because the solution region is closed. 
This amounts to solving the Helmholtz or wave equation 
 

022 =+∇ vkv                                          (7) 
 
Where for v = Ez transverse magnetic (TM) modes or v = Ez 
transverse electric (TE) modes, while wave number k is: 
 

222 βµεω −=k                                        (8) 
 
The permittivity ε  of the dielectric medium can be real for a 
lossless medium or complex for a lossy medium [5]. To 
apply the finite difference method, we discretize the cross 
section of the waveguide by a suitable square mesh.  Using 
central difference approximation to the partial derivatives of 
equation (7), gives 
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                                                                         (9) 
 
Where Δx = Δy = h is the mesh size. Equation (9) applies to 
all the free or interior nodes. At the boundary points, we 
apply Dirichlet condition (v=0) for the TM modes and 
Neumann condition for the TE modes: 
 

0=
∂
∂
n
v                                           (10) 

Paper ID: 020131534 624



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Volume 3 Issue 4, April 2014 
www.ijsr.net 

This implies that at boundary v=0 for TM modes. By 
applying equation (9) and Dirichlet conditions to all mesh 
points in the wave-guide cross section, m simultaneous 
equations involving the m unknowns (

mvvvv ,........,,, 321
) 

have been obtained. These equations may be conveniently 
cast in to matrix equation 
 

0)( =− IA λ .                                  (11) 
 
Where A is an m x m band matrix of known integer elements, 
I is an identity matrix ),........,,,( 321 mvvvvv =  is the 
eigenvector and 2)(kh=λ  is the eigen-value. There are 
several ways of determining λ  and the corresponding v.  
The method is iterative method. In this method the matrix 
elements are usually generated rather than stored. We begin 
with 1........321 ===== mvvvv   and a guessed value for k. 
The field 1+r

ijv at the (i, j)th node in the (r+1)th iteration is 

obtained from its known value in the rth  iteration using 
 

22
1

4 kh
R

vv ijr
ij

r
ij −

+=+ ω                                (12) 

 
Where ω  is the acceleration factor, 1 < ω  < 2, and Rij is the 
residual at the (i, j)th node given by 
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The finite difference equation is: 
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The new value k is obtained from the equation (15) is now 
used in applying equation (12), over the mesh for another 
more accurate values, which are again substituted in to the 
equation (15) for update k. 
 
4. Results 
 
4.1 Transmission line problem: 
 
To calculate the characteristic impedance Z0 for the micro-
strip transmission line in Fig.1 by using the algorithm 
described above with 
 

0201 35.2,,1
,5.0,5.2
εεεε ===

===
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Finite difference method is used to determine the 
characteristic impedance Z0. 
 

 
 
 

Table 1: Characteristic Impedance of a micro-strip line 
h Number of iterations Z0 

0.25 700 47.9242 
0.05 1000 50.1185 

0.025 1000 50.8198 
0.01 1000 56.7084 

 
Computed characteristic impedance of shielded double-micro 
strip transmission lines, are shown in the above table. The 
values of the characteristic impedance given by Mathew N. 
O. Sadiku [7] for h=0.25 is 49.05 and for h=0.05 is 61.53, 
and the number of iterations are 700 and 1000 respectively. 
We obtained that the computed results are compatible with 
these results. 
 
4.2 Waveguide problem for Helmholtz equation 
 
In this case, the cut-off wave number kc has been computed 
for different values of ‘a’ and ‘b’ for the rectangular 
waveguide as shown in Fig.2. 
 

Table 2: Values of cut-off wave number Kc for the TM 
modes in the rectangular waveguide 

 
 
In the eigen-value problem (7), the cut off wave number Kc 
for the TM modes (Dirichlet boundary condition v=0, at 
boundary) in the rectangular waveguide has been computed. 
The width of the waveguide is ‘a’ cm and the height of 
waveguide is ‘b’ cm as shown in Fig.2. The values of Kc are 
calculated for the different-different dimensions of the 
rectangular waveguide. The results are shown in table 2. The 
computed results are compatible with theoretical values of 
lowest rectangular wave guide mode. 
 
5. Conclusion 
 
In the transmission lines problem the governing equation is 
Laplace equation. We computed the characteristic impedance 
of shielded double micro-strip transmission lines. The 
computed values of the characteristic impedance are 47.92 
and 56.7 for h = 0.25 and h = 0.05 respectively. These values 
are compatible to compare with 49.05 and 61.53 for h = 0.25 
and h = 0.05 respectively given by Mathew N. O. Sadiku [7]. 
In the waveguide problem the governing equation is 
Helmholtz equation. We computed the cut off wave number 
kc for the lowest TM modes in the rectangular waveguide. 
The cut off wave number kc for the lowest TM modes 
obtained were compared with theoretical values, and they 
were found to be satisfactory. 

 

Paper ID: 020131534 625



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Volume 3 Issue 4, April 2014 
www.ijsr.net 

References 
 
[1] Ashish Kumar Garg, Itendra Kumar, Sham Bansal, Ishu 

Goyal, “Multigrid Approach for Solving Elliptic Type 
Partial Differential Equations”, International Journal of 
Science and Research, 3 (4), pp. 473-475, 2014. 

[2] Oklobdzija, Vojin G., Ram K. Krishnamurthy, High 
Performance Energy Efficient Microprocessor Design, 
Springer, 2006. 

[3] Guru, Bhag Singh, Hüseyin R. Hızıroğlu,  Electro-
magnetic Field Theory Fundamentals, 2nd Edition., 
Cambridge Univ. Press, 2004. 

[4] Schmitt, Ron Schmitt Electromagnetics Explained: A 
Handbook for Wireless/ RF, EMC, and High-Speed 
Electronics, Newnes, 2002. 

[5] G S N Raju, “Electromagnetic Field Theory and 
Transmission Lines”,Pearson Education Publishers 
(Singapore). 

[6] L Ganesan, SS Sreeja Mole, Transmission lines and wave 
guides, 2nd Edition, Tata McGraw Hill, 2010. 

[7] Mathew N. O. Sadiku, Numerical Techniques in 
Electromagnetics, CRC Press, 2001. 

 
Author Profile 
 
Sham Bansal received the M. Tech. degree in Industrial 
Mathematics and Scientific Computing from Indian Institute of 
Technology Madras in 2012. He did M. Tech. Project in TU 
Darmstadt, Germany under DAAD Scholarship. 

Paper ID: 020131534 626




