
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

Analysis of Query Optimization Technique over
Web Services

Neha B. Thakare1, R. R. Shelke2

1M.E. First Year CSE, HVPM C.O.E.T. Amravati, India,

2Prof CSE Department HVPM C.O.E.T. Amravati, India

Abstract: The query optimizer is the component of a database management system that attempts to determine the most efficient way to
execute a query. The high quality, structured data from Web structured sources is invaluable for many applications. A critical but still
largely unresolved question is: how to efficiently acquire the structured information inside Web databases through iteratively issuing
meaningful queries? So, a general purpose Web Service Management System (WSMS) that enables querying multiple web services in a
transparent and integrated fashion is analyzed. This paper tackles a first basic WSMS problem: query optimization for Select-Project-
Join queries spanning multiple web services. Our main result is an algorithm for arranging a query’s web service calls into a pipelined
execution plan that optimally exploits parallelism among web services to minimize the query’s total running time. Surprisingly, the
optimal plan can be found in polynomial time even in the presence of arbitrary precedence constraints among web services, in contrast
to traditional query optimization where the analogous problem is NP-hard.

Keywords: Web Service Management System (WSMS), NP-hard, Structured Query Language (SQL), Database Management System
(DBMS), Quality of services (QoS), Web Service (WS).

1. Introduction

Web services are rapidly emerging as a popular standard for
sharing data and functionality among loosely-coupled,
heterogeneous systems. Many enterprises are moving
towards service oriented architecture by putting their
databases behind web services, thereby providing a well-
documented, interoperable method of interacting with their
data [1].

Furthermore, data not stored in traditional databases also is
being made available via web services. There has been a
considerable amount of recent work on the challenges
associated with discovering and composing web services to
solve a given problem. The Metadata component deals with
metadata management, registration of new web services, and
mapping their schemas to an integrated view provided to the
client. There is a large body of work on data integration,
which applies to the Metadata component; we do not focus
on these problems in this paper. We are interested in the
more basic challenge of providing DBMS-like capabilities
when data sources are web services [2]. To this end we
propose the development of a Web Service Management
System (WSMS): a general-purpose system that enables
clients to query multiple web services simultaneously in a
transparent and integrated fashion. Overall, we expect a
WSMS to consist of three major components; see Figure 1.

 Figure 1: Web Service Management System

Given an integrated view of the schema, a client can query
the WSMS through an SQL-like interface [3]. The Query
Processing and Optimization component handles
optimization and execution of such declarative queries, i.e., it
chooses and executes a query plan whose operators invoke
the relevant web services. The Profiling and Statistics
component profiles web services for their response time
characteristics, and maintains relevant statistics over the web
service data, to the extent possible. This component is used
primarily by the query optimizer for making its optimization
decisions [4].

In this paper we take a first step at realizing a complete
WSMS: We address the problem of query optimization for
Select- Project-Join queries spanning multiple web services.
Most web services provide a function-call like interface X →
Y where X and Y are sets of attributes: given values for the
attributes in X, the web service returns values for the
attributes in Y. For example, a web service may take a credit
card number and return the card’s credit limit.

Due to this very restricted interface, most query processing
over web services can be thought of in terms of a
“workflow” or pipeline: some input data is fed to the WSMS,

Paper ID: 020131521 627

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

and the WSMS processes this data through a sequence of
web services [5]. The output of one web service is returned
to the WSMS and then serves as input to the next web
service in the pipeline, finally producing the query results.
Each web service in the pipeline typically performs
operations such as filtering out data items that are not
relevant to the query, transforming data items, or appending
additional information to each data item. Transformed or
augmented data items may be required for further processing
of the query (effectively performing a join across web
services), or may become a part of the final query result [6].

Deciding the optimal way to perform this pipelining poses
several new challenges:

1) Different web services may differ widely in their

response time characteristics, as well as in how many
output tuples they produce per input tuple on average
(henceforth selectivity). Hence different arrangements of
the web services in the pipeline may result in
significantly different overall processing rates [7]. The
optimizer must decide the best arrangement.

2) The web services in the pipeline may not always be freely
reordered, i.e., there might exist precedence constraints

3) A linear ordering of the web services in a pipeline may
not be optimal. On the other hand, parallelizing all web
services without precedence constraints may not be
optimal either, since one or more of the web services may
vastly reduce the amount of data the others need to
process [8].

4) Each web service call usually has some fixed overhead,
typically parsing SOAP/XML headers and going through
the network stack. Hence some web services support
sending data to them in “chunks” rather than one tuple at
a time.

Through experiments we found that the response time of a
web service often is not linear in the input chunk size, so the
optimizer must decide the best chunk size to use. In this
paper, we develop new, efficient algorithms that address
each of the above challenges to arrive at the optimal
pipelined execution plan for a given query over a set of web
services [9].

A simple yet significant observation that forms the basis for
our algorithms is that the performance of a pipelined plan
over web services (the rate of data processing through the
plan) is dictated by the slowest web service in the pipeline
(referred to as the bottleneck cost metric). In contrast, in a
traditional centralized system, the cost of a pipelined plan is
dictated by the sum of the costs of the plan operators
(referred to as the sum cost metric) rather than by the cost of
only the slowest operator [10].

2. Preliminaries

2.1 Query Plans and Execution Model

Query optimization and execution model can be
diagrammatically explained as follows:

Figure 2 : Query Plans And Execution Model

In general, an execution plan is an arrangement of the web
services in the query into a DAG H with parallel dispatch of
data denoted by multiple outgoing edges from single web
service.

3. Query Optimization

Most query optimizers represent query plans as a tree of
"plan nodes". A plan node encapsulates a single operation
that is required to execute the query [11]. The leaves of the
tree are nodes which produce results by scanning the disk,
for example by performing an index scan or a sequential
scan. A query is a request for information from a database.
Queries results are generated by accessing relevant database
data and manipulating it in a way that yields the requested
information. Since database structures are complex, in most
cases, and especially for not-very-simple queries, the needed
data for a query can be collected from a database by
accessing it in different ways, through different data-
structures, and in different orders.

4. Query Optimization Analysis

Figure 3: Query flow in DBMS

Each different way typically requires different processing
time [12]. Processing times of a same query may have large
variance, from a fraction of a second to hours, depending on
the way selected. The purpose of query optimization, which
is an automated process, is to find the way to process a given
query in minimum time [13].

Paper ID: 020131521 628

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

The large possible variance in time justifies performing
query optimization, though finding the exact optimal way to
execute a query, among all possibilities, is typically very
complex, time consuming by itself, may be too costly, and
often practically impossible [14]. Thus query optimization
typically tries to approximate the optimum by comparing
several common-sense alternatives to provide in a reasonable
time a "good enough" plan which typically does not deviate
much from the best possible result [15].

5. Future Scope

There are several interesting directions for future work:

1) An important next step is to extend our algorithms to

allow different input tuples to follow different plans as in
leading to even higher overall performance.

2) Our algorithms currently do not incorporate variance or
uncertainty in the response times of web services, or
more generally, quality of service (QoS) information
about web services. It is important to address the problem
of finding plans that consistently choose the highest-
quality available web services and that adapt to changes
in web service response times.

3) Our query optimization algorithm relies on knowledge of
web service response times and selectivity’s. Hence we
need to develop profiling techniques that can accurately
track these quantities and detect changes in them. Work
on self-tuning histograms may be relevant to track
selectivity’s.

6. Conclusion

We have analyzed the overall goal of a general-purpose Web
Service Management System (WSMS), enabling clients to
query a collection of web services in a transparent and
integrated fashion. In this paper, we focus on new query
optimization issues that arise in a WSMS. Our execution
model consists of pipelined query processing over web
services, and we derive the cost metric to characterize the
cost of a pipelined plan. For this cost metric, we have
devised new algorithms to decide the optimal arrangement of
web services in a pipelined plan, respecting precedence
constraints which will make new revolution in web
searching.

References

[1] F. Casati and U. Dayal, Editors. Special Issue on Web
Services, Data Eng. Bull., 25(4), 2002.

[2] J.Burge,K.Munagala and U. Srivastava.Ordering
pipelined operators with precedence constraints.

[3] M. Ouzzani and A. Bouguettaya. Query processing and
optimization on the web. Distributed and Parallel
Databases, 15(3):187–218,2004

[4] Chaudhuri,Surajit (1998). “An Overview of Query
Optimization in Relational Systems". Proceedings of the
ACM Symposium on Principles of Database Systems.”

[5] Ioannidis,Yannis(March1996)."Query optimization".
[6] J. Burge, K. Munagala, and U. Srivastava. Ordering

pipelined operators with precedence constraints.
[7] F. Casati and U. Dayal, editors. Special Issue on Web

Services, IEEE Data Eng. Bull., 25(4), 2002.

[8] S. Chaudhuri and K. Shim. Optimization of queries with
user-defined predicates. ACM Trans. on Database
Systems, 24(2):177–228, 1999.

[9] Condon, A. Deshpande, L. Hellerstein, and N. Wu. Flow
algorithms for two pipelined filter ordering problems. In
Proc. of the 2006 ACM Symp. on Principles of Database
Systems, 2006.

[10] D. DeWitt et al. The Gamma Database Machine Project.
IEEE Trans. on Knowledge and Data Engineering,
2(1):44–62, 1990.

[11] L. Ding and E. Rundensteiner. Evaluating window joins
over punctuated streams. In Proceedings of the 2004
ACM Conf. on Information and Knowledge
Management, pages 98107, 2004.

[12] D. Florescu, A. Grunhagen, and D. Kossmann. XL: A
platform for web services. In Proc. First Biennial Conf.
on Innovative Data Systems Research (CIDR), 2003.

[13] D. Florescu, A. Levy, I. Manolescu, and D. Suciu.
Query optimization in the presence of limited access
patterns. In Proc. of the 1999 ACM SIGMOD Intl. Conf.
on Management of Data, pages 311–322, 1999.

[14] H. Garcia-Molina et al. The TSIMMIS approach to
mediation: Data models and languages. Journal of
Intelligent Information System, 8(2):117–132, 1997.

[15] R. Goldman and J. Widom. WSQ/DSQ: A practical
approach for combined querying of databases and and
the web. In Proc. Of the 2000 ACM SIGMOD Intl.
Conf. on Management of Data, pages 285–296, 2000.

Author Profile

Miss Neha B. Thakare has Completed Degree in
Bachelor of Computer Science and Engineering from
IBSS COET, Amravati, Maharashtra, India. She is
pursuing M.E. First Year Computer Science and

Engineering in HVPM COET, Amravati, Maharashtra, India.

Prof. R. R. Shelke is working as Assistant Professor, Department
of Computer Science & Engineering, HVPM COET, Amravati,
Maharashtra, India.

Paper ID: 020131521 629

