
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Volume 3 Issue 4, April 2014 
www.ijsr.net 

A Modified Sir Epidemic Model with Immigration 
and Generalized Saturated Incidence Rate Function 

 
D. Jasmine. E. C.1, Henry Amirtharaj2 

 
1PG & Research Department of Mathematics 

Bishop Heber College (Autonomous), Trichy, India 
 

2PG & Research Department of Mathematics 
Bishop Heber College (Autonomous), Trichy, India 

 
 

Abstract: On account of the effect of limited treatment resources on the control of epidemic disease, a modified SIR epidemic model 
with generalized saturated incidence rate is incorporated. The stability analysis of the disease-free and the endemic equilibrium are 
discussed with a nonlinear incidence rate. 
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1. Introduction 
 
Contacts between susceptible and infective may lead to 
infection, and infective may recover at different times after 
they become infective. This dynamics is stochastic in nature 
but for a large population, the statistical fluctuations may be 
ignored and the change in the size of each compartment 
becomes deterministic. Epidemic dynamics is an important 
method of studying the speared rules of infectious diseases 
qualitatively and also qualitatively. It is largely based on 
specific properties of population growth. Analysis through 
Mathematical Modeling requires transmission rules. i.e., rate 
of incidence. Incidence is an epidemiological model is the 
rate at which susceptible become infections. The behavior of 
the SIR models are greatly affected by the way in which 
transmission between infected and susceptible individual are 
modeled. 
 
Mathematical Modeling is an important tool to understand 
and predict the spread of infectious diseases. In this process 
rate of incidence plays a crucial role. The incidence is an 
epidemiological model is the rate at which susceptible 
become infectious. The incidence rate has been frequently 
used in classical epidemic models. Capasso and Serio [3] 
introduced a saturated incidence rate into epidemic models. 
Mena Lorca and Hethcote [12] also analyzed an SIR model 
with the same saturation incidence. Ruan and Wang [15] 
studied an epidemic model with a specific non-linear 
incidence rate kI2S / (1+αI2) and presented a detailed 
qualitative and bifurcation analysis of the model. A more 
general incidence λIpS / (1+αIq) was proposed by many other 
researchers [2, 5, 6, 7, 8, 9]. A very general form of non-
linear incidence rate was considered by Derrick and 
Driessche [4]. Simple mass action was introduced in classical 
Kermack-Mcendrick [10] model βSI, where β is transmission 
rate, S is susceptible population and I is infectious 
population. Another popularly used incidence rate is standard 
incidence βSI /N, where N is the total population and β is 
daily contact rate. An SIRS model with saturation incidence 
was proposed by Hethcote, Liu and Levin [7, 11] have 
proposed a non-linear incidence rate. Ankit Agrawal [1] have 

proposed an incidence rate as .kI
Iρ β+

In this paper we 

consider a modified SIR  model with the saturated incidence 
rate  

function 2
1 2

.SI
I I
λ

ρ α α+ +  
 
2. The Basic Mathematical Model 
 
In this section we have considered an SIR epidemiological 
model with asymptotically homogeneous incidence rate 
function. Then our model under the frame work of the 
following form 

( ) (1)

( )

dS a dS R
dt
dI d m I
dt
dR mI d R
dt

φ β µ

φ

β

= − − + + 

= − + 

= − + 

 

where S(t), I(t) and R(t) denote the number of susceptible, 
infective and recovered at time t respectively. a  is the 
recruitment rate of population, d is the natural death rate of 
the population, � is the natural recovery rate of infective, � 
is the rate at which recovered individuals loss immunity and 
return to susceptible, μ is the increase of susceptible at the 
constant rate and φ  is the transmission rate. 

The transmission rate 2
1 2

SI
I I
λφ

ρ α α
=

+ +
 displays a 

saturation effect accounting for fact that the number of 
contacts an individual reaches some maximal value due to 
spatial distribution of the population, where λ is the 
proportionality constant ρ is the positive constant ≥ 1, α  is 
a positive parameter and SIλ is the infection force of the 
disease. 
 
3. Main Results  
 
In this section we study an SIR epidemic model to obtain 
properties of the equilibrium points and analyze sufficient 
conditions under which the equilibrium points are unique or 
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global. We rewrite the system (1) as  

( )
( )

S a dS R
I d m I
R mI d R

φ β µ

φ
β

= − − + +

= − +

= − +







                    (2)  

Because of the biological meaning of the components 
[ ( ), ( ), ( )],S t I t R t  we focus on the model in the first octant 
of R3. 
 
We first consider the existence of equilibra of system (2). It 
is easy, by computations, to coincide that the system (2) has 
two equilibrium statuses. The disease free equilibrium state 

0 ( ,0,0)aE
d

= which exists for all parameter values and 

endemic equilibra ( * * *, ,S I R ). To find the endemic 

equilibra ( * * *, ,S I R ) of system (2) set 0.S I R= = =  

 
Then, we obtain  

0
( ) 0

( ) 0

a dS R
d m I

mI d R

φ β µ
φ

β

− − + + =
− + =
− + =

  

⇒  
mIR

d β
=

+  
 

Then 
*

* mIR
d β

=
+

 

 
( ) 0

( )
d m I

d m I
φ

φ
− + =

⇒ = +
 

and 2
1 2

( ) 0IS d m I
I I
λ

ρ α α
− + =

+ +
 

 
2

1 2( )( ) ,I I d m IS
I

ρ α α
λ

+ + +
=

  

 

2
* 1 2

*

( )I IS
I

φ ρ α α
λ

+ +
=  

 
We have  

2
1 2( )( )

( ) 0

d I I d ma

mId m I
d

ρ α α
λ

β µ
β

+ + +
−

− + + + =
+

2
2

1

( )( )
[ ( )( ) ( )( ) ]

( )( ) ( )( ) 0

d d m d I
d d m d d m d m I
d d m d a d

α β
α β β λ βλ

ρ β λ µ β

+ +
+ + + + + + −
+ + + − + + =

1

2

2

[ ( )( )]
2 ( )( )

( )( ) ]
2 ( )( )

d d m dI
d d m d

d m d m
d d m d

α β
α β

λ β βλ
α β

+ +
= −

+ +
+ + + −

+ +
 

2
1

2
2

2

[ ( )( ) ( )( ) ]

4 ( )( ) [ ( ) ( )]
2 ( )( )

d d m d d m d m
d d m d d d m a

d d m d

α β λ β βλ

α β ρ λ µ
α β

+ + + + + −

− + + + − +
±

+ +
i.e., 

* 1

2

[ ( )( ) ( )( ) ]
2 ( )( )

d d m d d m d mI
d d m d

α β λ β βλ
α β

− + + + + + −
=

+ +
2

1
2

2

2

[ ( )( ) ( )( ) ]

4 ( )( ) [ ( ) ( )]
2 ( )( )

d d m d d m d m
d d m d d d m a

d d m d

α β λ β β λ

α β ρ λ µ
α β

+ + + + + −

− + + + − +
±

+ +
which exists provided that the reproduction number 

 
0

( )
( )
aR

d d m
λ µ
ρ

+
=

+
>1 (3)  

 
4. Mathematical Analysis  
 
4.1 Lemma 

The plane 
aS I R

d
µ+

+ + =  is a manifold of system (2) 

which is attracting in the first octant. 
Proof.  
Summing up the three equations in (2) and denoting 

( ) ( ) ( ) ( )N t S t I t R t= + + , we have  

( )dN a dN
dt

µ= + −  (4) 

It is clear that ( ) aN t
d
µ+

=  is a solution of system (4) and 

for any ( ') 0,N t ≥ the general solution of system (4) is 
obtained by solving system (4). This is the linear differential 
equation of first order so the general solution of system (4) is  

 ( ')1 {( ) [( ) ( ')] }d t tN a a dN t e
d

µ µ − −= + − + −  

When t→ ∞, we get  

( ) aN t
d
µ+

=   

This implies the conclusion.  
It is clear that the limit set of system (2) is on the plane 

aS I R
d
µ+

+ + = . Thus, the reduced system is 

2
1 2

( )
( ) ( , )

(5)

( ) ( , )

aI I RdI d d m I P I R
dt I I
dR mI d R Q I R
dt

µλ

ρ α α

β

+ − − 
= − + ≅ + + 


= − + ≅ 



  

 
4.2 Theorem 
 
System (5) does not have non-trivial periodic orbit if � (2d 
+ � + �) > 0. 
Proof.  
Consider system (5) for 0I > and 0R > . Take a Dulac 
function Wiggins [14], 
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1( , )D I R φ−=  

i.e., �(�, �) =
IS

II
λ

ααρ 2
21 ++

 

Notice that  
2

1 2

2

2
1 2

2

( )( ) ( )

( )

( )( ) [ ( )]
( )

d I IDP DQ
aR R I R

d
I I d aR I Ra dI I R
d

ρ α α
µλ

ρ α α β µ
µλ

+ +∂ ∂
+ = −

+∂ ∂ − −

+ + + +
− − − −

+ − −

⇒

( ) ( ) 0DP DQ
R R

∂ ∂
+ <

∂ ∂
  

Hence the conclusion follows.  
In order to study the properties of the disease-free 
equilibrium 0E  and the endemic equilibrium *E , we rescale 
the system (5) by 

 ,Ix
d
λ
β

=
+

 ,Ry
d
λ
β

=
+

( )d tτ β= +  

2
1 2

( )
( )

aI I Rdx d d m I
dt d I I

µλλ
β ρ α α

+ − − 
= − + + + + 

 

 

2
1 2

1 ( )
( )

( )
( )

dx I a I R
d d I I d d d d

I d
d d

λ λ µ λ λ
τ β ρ α α β β β
λ µ
β β

 +
= − − + + + + + + 

+
−

+ +
 

( )
1 (6)

dx px A x y Tx
dt qx
dy sx y
dt

= − − − + 

= − 

 where 1,p ρ−=  

1 2( )( ) ,I dq α α β
ρλ

+ +
=  

( ) ,
( )
aA

d d
µ λ
β

+
=

+
 

d mT
d β
+

=
+

 

and 
ms

d β
=

+
 

The trivial equilibrium (0,0) of system (6) is the disease-free 
equilibrium of model (2) and the unique positive equilibrium 
(x∗,  y∗) of system (6) is the endemic equilibrium E∗ of model 
(2) if and only if 0Ap T− > and 0q > , where 

*

(1 )
Ap Tx

p s Tq
−

=
+ +

, * *y sx=  

We first determine the stability and topological type of (0, 0). 
The Jacobian matrix of system (6) at (0, 0) is 

0

0
1

Ap T
M

s
− 

=  − 
 

 
 
 
 

4.3 Theorem 
 
If 0T Ap− >  the disease-free equilibrium (0,0) of system 
(6) is stable hyperbolic node, 0T Ap− =  then saddle node 
and 0T Ap− <  then hyperbolic saddle node. 
 
When 0T Ap− < , we discuss the stability and topological 

type of the endemic equilibrium * *( , )x y . 

The Jacobian matrix of the system (6) at * *( , )x y is 
* * * *

* 2 * 2
1

[ ( 1)] [ (1 )]
(1 ) (1 )

1

px qsx Aq px qx
M qx qx

s

 − + − +
 = + + 
 − 

 

We have 
*

1 * 2

[ (1 )]det( )
(1 )

px Aq sM
qx
+ +

=
+

 

Since 0,q > it follows that 1det( ) 0M >  and * *( , )x y is a 
node or a focus or a center. Now we have the following 
result on the stability of * *( , )x y . 
 
4.4 Theorem  
 
Suppose 0T Ap− < , then there is a unique endemic 

equilibrium * *( , )x y  of model (6) which is a saddle mode. 
Proof. 
The trace of the matrix M1 is  

* * * 2

1 * 2

[ ( 1)] (1 )( )
(1 )

px qsx Aq qxTrace M
qx

− + + +
=

+
 

The sign of trace (��) is determined by 
* *

1 [ ( 1)]S px qsx Aq= − +  

Substituting *

(1 )
Ap Tx

s Tq
−

=
+ +

in 1S  and using a straight 

forward calculation, we have  

1 2

( ) [ ( )
[ (1 ) ]

( 1)( )]

p Ap TS Aq p Tq
p s Tq

s Tq p

−
= − +

+ +
− + +  

Since 0,q >  [ (1 ) ] 0p s Tq+ + >  
 and [ ( ) ( 1)( )] 0Aq p Tq s Tq p− + − + + < ,  

 1 0S⇒ < . 

However, when 0T Ap− < , we have  
trace (M1) < 0.This completes the proof. 
 
5. Concluding Remarks 
 
Modeling results are helpful to predict the developing 
tendency of disease. The model we have discussed provides 
learning about the transmission rate effects. In this paper, we 
consider a modified SIR model with immigration and 
generalized incidence rateφ . The basic reproduction number 
R0 with the special kind of transmission rule. The global 
stability of the endemic equilibrium point 
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* * * *( , , )E S I R= depends on the basic reproduction 
number R0. It plays an important role to control the disease. 
When R0 ≤ 1 the disease free equilibrium 

0 ( ,0,0)aE
d
µ+

= is globally attractive in the first octant 

and it is globally stable, that is the disease dies out. When R0 
> 1 the endemic equilibrium *E exists and is globally stable 
in the interior. Results and parametric conditions help to 
develop social consciousness about the disease among 
susceptible.  
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