
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Volume 3 Issue 4, April 2014 
www.ijsr.net 

Multigrid Approach for Solving Elliptic Type 
Partial Differential Equations 

 
Ashish Kumar Garg1, Itendra Kumar2, Sham Bansal3, Ishu Goyal4 

 

1Delhi University, Department of Mathematics, JDM College, Rajinder Nagar, New Delhi – 110060, India 
 

2Delhi University, Department of Mathematics, Hansraj College, Mahatma Hansraj Marg Malkaganj, Delhi – 110007, India 
 

3Delhi University, Department Of Mathematics, Bharati College, C4, Janakpuri, New Delhi – 110058, India 
 

4Panjab University Chandigarh, Department of Physics, Chandigarh – 160014, India 
 
Abstract: The present work is to develop numerical solutions for elliptic type partial differential equations using finite difference 
method. To establish this work we first present and classify the partial differential equations. Next we present and describe the multigrid 
methods. Applications of multigrid methods for the numerical solution of one-dimensional and two dimensional Poisson’s equation 
have been discussed. All the implementations have done by using Matlab. 
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1. Introduction 
 
Physical processes can be commonly related to the change in 
the properties of the substance undergoing the process. Those 
processes that depend on more than two variables are called 
partial differential equations. In the second order partial 
differential equations there are three forms of the partial 
differential equations, elliptic, hyperbolic and parabolic type. 
There are various applications of elliptic type partial 
differential equations in physical phenomena: Quantum 
mechanics, electrodynamics and thermodynamics. To 
numerically solve these elliptic partial differential equations, 
there are many methods and schemes. The finite difference 
method is a choice to numerically solve the elliptic partial 
differential equations. The finite difference method uses a 
topologically square network of lines to construct the 
discretization of the partial differential equations. In the finite 
difference method, to solve the large system of equations, the 
iterative methods are used. The multigrid method is also 
effective in the finite difference discretization to solve the 
elliptic type linear partial differential equations. Multigrid 
methods are the well-developed, flexible and optimal 
computational complexity tools for the numerical solution of 
partial differential equations. In contrast to other methods, 
multigrid methods are general and they can treat arbitrary 
regions and boundary conditions. Multigrid methods do not 
depend on the separability of the equations or other special 
properties of the equation. The main advantage is: it can 
solve problems to a given accuracy in a number of operations 
that is proportional to the number of unknowns, so the 
multigrid methods reduce the solver setup time. The main 
idea of multigrid is to accelerate the convergence of a basic 
iterative method by solving a coarse problem. The multigrid 
method is similar to interpolation between coarser and finer 
grids [1]. In present work, second order partial differential 
equations of mathematical physics and the applications of the 
partial differential equations in physical phenomena have 
been presented. The finite difference approximations to 
derivatives have also been described. Multigrid methods can 
be applied in combination with any of the common 

discretization techniques. For example, the finite element 
method may be recast as a multigrid method [2]. Multigrid 
algorithm has been implemented to find a better 
approximation to the solution of the Poisson’s equation. 
 
2. Finite Difference Method 
 
Among various numerical techniques for solving partial 
differential equations and initial and boundary problems, the 
finite difference methods are widely used. These methods are 
derived from the truncated Taylor’s series where a given 
partial differential equations and boundary and initial 
conditions are replaced by set of algebraic equations that are 
then solved by varies well known numerical techniques [3]. 
These methods have significant advantages over other 
methods because of their simplicity of analysis and computer 
codes in solving problems with complex geometrical 
structures. Different schemes for second order partial 
derivatives have been discussed and applied to discretize the 
boundary value problems of the second order partial 
differential equations. 
 
2.1 Multigrid Methods 
 
Multigrid methods in numerical analysis are being used for 
solving differential equations using a hierarchy of 
discretization. Many basic relaxation methods exhibit 
different rates of convergence for short and long wavelength 
components, suggesting these different scales to be treated 
differently, as in a Fourier analysis approach to multigrid [4]. 
Multigrid methods are among the fastest solution techniques 
known today. The elliptic and hyperbolic partial differential 
equations are, by and large, at the heart of most mathematical 
models used in engineering and physics, giving rise to 
extensive computations. Often the problems that one would 
like to solve exceed the capacity of even the most powerful 
computers, or the time required is too large to allow inclusion 
of advanced mathematical models in the design process of 
technical apparatus, from microchips to aircraft, making 
design optimization more difficult. Multigrid methods are a 
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prime source of important advances in algorithmic efficiency, 
finding a rapidly increasing number of users. Unlike other 
known methods, multigrid offers the possibility of solving 
problems with N unknowns with O (N) work and storage, not 
just for special cases, but for large classes of problems [5]. 
 
2.2 Discretization Scheme 
 
Jacobi iterative solver has been used to specify a tolerance on 
the residual. The interval has been discretized into n equal 
subintervals. System of n+ 1 equation has been defined by 
involving the boundary conditions at the first and last nodes, 
and the discretized differential equation at the n-1 interior 
nodes. It has been observed that the solver on a coarse grid 
quickly approximates the overall behavior of the solution. In 
present paper, a multigrid approach has been followed to find 
the solution for the Poisson equation. We first make a very 
simple experiment, in which we use a single pair of coarse 
and fine grids. Two geometric grids has been considered in 
such a way that the fine grid contains all the nodes of the 
coarse grid, as it has been assumed that the fine grid contains 
all the nodes of the coarse grid and that the coarse grid can 
be constructed by selecting just the nodes with odd index 
from the fine grid. 
 
2.3 Restriction Operator 
 
The restriction operator is a mapping from fine grid to coarse 
grid R: Ωh → ΩH, let u and u defined on Ωh (fine grid) and 
ΩH (coarse grid) [5, 6, 7]. Then Ru =u . 
 
For restriction operator in one dimensional 
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2.4 Prolongation operator 
 
Prolongation operator is a mapping from coarse grid to fine 
grid I: Ωh → ΩH, let u and u defined on Ωh (fine grid) and 
ΩH (coarse grid) [5, 6, 7]. Then Iu = u. 
For restriction operator in one dimensional  
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For restriction operator in two dimensional 
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Two-grid Algorithm 
 
Two-grid method for solving 
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method. 
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Ah is the fine grid matrix. 
AH is the coarse grid matrix. 
R is matrix from the restriction operator. 
I is matrix from the prolongation operator. 
 
H is the step length of the coarse grid and h is the step length 
of the fine grid. A two-grid scheme starts at the fine level 
with pre-smoothing, performs a coarse grid correction for 
solving a coarse grid auxiliary problem, and ends with post-
smoothing. A pictorial representation of this process where 
‘fine’ is a high level and ‘coarse’ is a low level looks like a V 
work flow. This is called V cycle. To solve the problem to a 
given tolerance, one has to apply the two grid V-cycle 
iteratively. 
 
3. Multigrid Algorithm 
 
In the Two-grid scheme the size of the coarse grid is twice 
larger than the fine one, thus the coarse problem may be very 
large. However, the coarse problem has the same form as the 
residual problem on the fine level. The sequence of grids 
with mesh size h1 > h2 > h3 > h4 > ..... > hL > 0 so that hk-1 = 
2hk. Here k =1, 2,….., L, is called the level number. The 
number of interior grid point will be nk. On each level k we 
denote the problem

kkk fuA = . Here 
kA  is a 

kk nn ×  matrix, 
and 

kk fu ,  are vectors of size
kn . The transfer among levels 

has been performed by two linear mappings, the restriction R 
(i.e. 1−k

kI ) and I (i.e. k
kI 1−

) prolongation operators. We denote 

),( kkkk fuSu =  as a smoothing iteration. 
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The parameter γ represents the number of times the multi 
grid procedure is applied to coarse level problem. Since this 
procedure converges very fast, γ = 1 or γ = 2 are the typical 
values used. For γ = 1 the multigrid scheme is called V-cycle, 
whereas γ = 2 is named W-cycle. It turns out that with a 
reasonable γ, the coarse problem is solved almost exactly. 

Paper ID: 020131481 474



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Volume 3 Issue 4, April 2014 
www.ijsr.net 

Therefore in this case the convergence factor of a multigrid 
cycle equals that of the corresponding two grid method. 
 
4. Results 
 
For one dimensional Poisson equation 
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Figure 1: Exact and approximate Solution of one 

dimensional Poisson equation 
 
The numerical solution of one dimensional Poisson equation 
by multigrid method is shown in the Fig. 1. In the figure, blue 
curve shows the approximate solution computed by the 
multigrid method and red curve shows the exact solution. 
From the above plot we can say, the computed numerical 
solution is converging to the exact solution. Therefore 
multigrid methods reduce the error. So multigrid methods are 
much more efficient for computing the solution of elliptic 
partial differential equations. 
 
For Two dimensional Poisson equation 
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 The boundary conditions are 0)0,(,0),0( == xuyu , 

0)1,(,0),1( == xuyu ; 10,10 ≤≤≤≤ yx . 

 
Figure 2: Solution of two dimensional Poisson equation by 

multigrid method 
 

The numerical solution of two dimensional Poisson’s 
equation by multigrid methods shown in the Fig. 2. The 
multigrid method is more efficient to numerically solve the 

partial differential equations. The convergence rate of the 
multigrid methods is faster than the other simple iterative 
methods and gives the better approximation to the numerical 
solution.  
 
5. Conclusion 
 
The finite difference method is used to solve the elliptic 
partial differential equations. The numerical solution of one 
dimensional and two dimensional Poisson’s equations are 
computed by multigrid methods in the finite difference 
discretization techniques. Multigrid methods are very well 
suited methods to solve the elliptic partial differential 
equations. Multigrid methods are among the fastest solution 
techniques and give the better approximation to the 
numerical solutions. It can solve problems to a given 
accuracy in a number of operations that is proportional to the 
number of unknowns. 
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