
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

Information Extraction Using RDBMS and
Stemming Algorithm

Venkata Sudhakara Reddy .Ch1, Hemavathi .D2

1M .Tech Database Systems, Department of Information Technology, SRM University, India

2Assistant Professor (Sr.G), Department of Information Technology, SRM University, India

Abstract: Information extraction systems are traditionally implemented as a pipeline of special-purpose processing modules targeting
the extraction of a fussy form of data. A major drawback of such an attack is that whenever a new extraction goal emerges or a module
is improved, extraction has to be replayed from scratch to the entire text corpus even though but a minor portion of the corpus might be
involved. In this report, we report a novel approach for information extraction in which extraction needs are extracted in the
configuration of database inquiries, which are measured and optimized by database systems. Using database queries for data extraction
enables generic extraction and minimizes reprocessing of data by performing incremental extraction to identify which part of the data
are affected by the change of components or goals. Further, our approach provides automated query generation components and
stemming algorithm so that casual users do not have to learn the query language in parliamentary procedure to do the extraction. To
show the feasibility of our incremental extraction approach, we performed couple of experiments to highlight two significant aspects of
an information extraction system: quality and efficiency of the extraction results. Our experiments show that in the outcome of
deployment of a new module, our incremental extraction approach minimizes the processing time by 92 percent as compared to a
traditional pipeline approach. By using our methods to a corpus of 20 million biomedical abstracts, our experiments indicate that the
query performance is efficient for real-time applications. Our experiments also uncovered that our approach achieves high quality
extraction results.

Keywords: Text mining, Query languages, Information Storage and Retrieval

1. Introduction

IT is calculable that every year over 600,000 articles are
revealed within the medical specialty literature, with near 20
million publication entries being keep within the telephone
system database.1 To uncover data from such an oversized
corpus of documents, it's very important to deal with the data
needs in an automatic manner. the sector of knowledge
extraction (IE) seeks to develop ways for winning structured
data from linguistic communication text. Examples of
structured data are the extraction of entities and relationships
between entities.

IE is usually seen as a one-time method for the extraction of
a specific reasonably relationships of interest from a
document assortment. i.e. is typically deployed as a pipeline
of special-purpose programs, that embody sentence splitters,
tokenizes , named entity recognizers, shallow or deep
grammar parsers, and extraction supported a collection of
patterns. The high demand of i.e. in varied domains leads to
the event of frameworks like UIMA [1] AND circuit [2],
providing how to perform extraction by process workflows of
elements. This type of extraction frameworks is typically file
based mostly and therefore the processed knowledge will be
utilized between elements. In this traditional setting, relative
databases area unit usually not involved within the extraction
method, however area unit solely used for storing the
extracted relationships. While file-based frameworks area
unit appropriate for one-time extraction, it's necessary to note
that there are a unit cases once IE should be performed
repeatedly even on an equivalent document assortment.
Think about a situation wherever a named entity recognition
element is deployed with AN updated ontology or AN
improved model supported applied mathematics learning.
Typical extraction frameworks would need the reprocessing

of the whole corpus with the improved entity recognition
component likewise because the alternative unchanged text
process components. Such reprocessing will be
computationally intensive and may be reduced. for example,
a full processing for info extraction on seventeen million
MEDLINE abstracts took over thirty six K hours of
electronic equipment time employing a single-core electronic
equipment with 2-GHz and a pair of GB of RAM.2 Work by
[4], [5] addresses the wants for economical extraction of
evolving text like the frequent content updates of net
documents but such approaches don't handle the difficulty of
modified extraction elements or goals over static text
knowledge. In this paper, we have a tendency to propose a
brand new paradigm for info extraction. during this
extraction framework, intermediate output of every text
process element is keep in order that only the improved
element should be deployed to the entire corpus. Extraction
is then performed on each the previously processed
knowledge from the unchanged elements as well because the
updated knowledge generated by the improved component.
activity such quite progressive extraction can result during a
tremendous reduction of time interval. To realize this new
info extraction framework, we propose to decide on direction
systems over file-based storage systems to deal with the
dynamic extraction needs. Our planned info extraction
consists of 2 phases:

1. Initial section
We have a tendency to perform a one-time take apart, entity
recognition, and tagging (identifying individual entries as
happiness to a category of interest) on the whole corpus
supported this information. The generated grammar take
apart trees and linguistics entity tagging of the processed text
is keep during a relative database, referred to as take apart
tree info (PTDB).

Paper ID: 020131474 503

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

2. Extraction section
Extraction is then achieved by issuing info queries to PTDB.
To express extraction patterns, we have a tendency to design
and enforced a search language referred to as take apart tree
query language (PTQL) that's appropriate for generic
extraction. Note that within the event of a amendment to the
extraction goals(e.g., the user becomes inquisitive about new
sorts of relations between entities) or a amendment to AN
extraction module (e.g., AN improved element for named
entity recognition becomes available), the responsible
module is deployed for the whole text corpus and therefore
the processed knowledge area unit inhabited into the PTDB.
Queries area unit issued to spot the sentences with new
recognized mentions. Then extraction will be performed
solely on such affected sentences instead of the whole
corpus. Thus, we achieve progressive extraction that avoids
the need to reuse the whole assortment of text in contrast to
the file-based pipeline approaches. Using info queries rather
than writing individual special-purpose programs, info
extraction becomes generic for numerous applications and
becomes easier for the user. However, writing such queries
may still need abundant users’ effort. To further reduce
users’ learning burden, we have a tendency to propose
algorithms that can mechanically generate PTQL queries
from coaching knowledge or a user’s keyword queries.

Novel Database-Centric Framework for info Extraction:
in contrast to the standard approaches, where IE is achieved
by special-purpose programs and databases area unit solely
used for storing the extraction results, we have a tendency to
propose to store intermediate text processing output during a
info, take apart tree info. This approach minimizes the
necessity of reprocessing the entire assortment of text within
the presence of latest extraction goals and preparation of
improved processing elements. Search language for info
Extraction. info extraction is expressed as queries on the take
apart tree info. As question languages like XPath and
XQuery don't seem to be appropriate for extracting linguistic
patterns [6], we have a tendency to design and enforced a
question language referred to as takes apart tree search
language, which allows a user to outline extraction patterns
on grammatical structures like constituent trees and linkages.
Since extraction is specified as queries, a user now not must
write and run special purpose programs for every specific
extraction goal. Automatic question Generation. Learning the
question language and manually writing extraction queries
could still be a long and labor-intensive process. Moreover,
such a poster hoc approach is probably going to cause
unsatisfactory extraction quality. To further reduce a user’s
effort to perform info extraction, we have a tendency to style
2 algorithms to mechanically generate extraction queries,
within the presence and in the absence of coaching
knowledge, severally. The rest of the paper is organized as
follows: we have a tendency to initial present a brief
background on i.e. and Link descriptive linguistics parsing in
Section two. In Section three, the system design of our
extraction framework is mentioned in details, including the
PTDB, the search language PTQL, and analysis of PTQL
queries. We have a tendency to then describe the 2 question
generation components in our framework in Section four, that
alter the generation of extraction queries from each labeled
and unlabeled knowledge. The question performance of our
approach and the quality of the extracted result area unit

bestowed in Section 5. We have a tendency to describe the
connected work and conclude in Sections six and seven.

2. Literature Review

Most information extraction (IE) approaches have considered
only static text corpora, over which we apply IE only once.
Many real-world text corpora however are dynamic. They
evolve over time, and so to keep extracted information up to
date we often must apply IE repeatedly, to consecutive
corpus snapshots. Applying IE from scratch to each snapshot
can take a lot of time. To avoid doing this, we have recently
developed Cyclex, a system that recycles previous IE results
to speed up IE over subsequent corpus snapshots. Cyclex
clearly demonstrated the promise of the recycling idea. The
work itself however is limited in that it considers only IE
programs that contain a single IE “blackbox.” In practice,
many IE programs are far more complex, containing multiple
IE blackboxes connected in a compositional “workflow.” In
this paper, we present Delex, a system that removes the
above limitation. First we identify many difficult challenges
raised by Delex, including modeling complex IE programs
for recycling purposes, implementing the recycling process
efficiently, and searching for an optimal execution plan in a
vast plan space with different recycling alternatives. Next we
describe our solutions to these challenges. Finally, we
describe extensive experiments with both rule-based and
learning-based IE programs over two real-world data sets,
which demonstrate the utility of our approach. Over the past
decade, the problem of information extraction (IE) has
attracted significant attention. Given a text corpus (e.g., a
collection of emails, Web pages, etc.), much progress has
been made on developing solutions for extracting information
from the corpus effectively [10, 2, 05, 04] (see also [06, 04]
for the latest survey and special issue).

3. Problem Statement

3.1 Existing System

IE is typically seen as a one-time process for the extraction of
a particular kind of relationships of interest from a document
collection. IE is usually deployed as a pipeline of special-
purpose programs, which include sentence splitters,
tokenizes, named entity recognizers, shallow or deep
syntactic parsers, and extraction based on a collection of
patterns. The high demand of IE in various domains results in
the development of frameworks such as UIMA and GATE,
providing a way to perform extraction by defining workflows
of components. This type of extraction frameworks is usually
file based and the processed data can be utilized between
components. In this traditional setting, relational databases
are typically not involved in the extraction process, but are
only used for storing the extracted relationships. While file-
based frameworks are suitable for one-time extraction, it is
important to notice that there are cases when IE has to be
performed repeatedly even on the same document collection.
Consider a scenario where a named entity recognition
component is deployed with an updated ontology or an
improved model based on statistical learning.
Typical extraction frameworks would require the
reprocessing of the entire corpus with the improved entity

Paper ID: 020131474 504

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

recognition component as well as the other unchanged text
processing components. Such reprocessing can be
computationally intensive and should be minimized. For
instance, a full processing for information extraction on 17
million Medline abstracts took more than 36 K hours of CPU
time using a single-core CPU with 2-GHz and 2 GB of
RAM.2 Work addresses the needs for efficient extraction of
evolving text such as the frequent content updates of web
documents but such approaches do not handle the issue of
changed extraction components or goals over static text data.

3.2 Proposed System

In this project, we have a tendency to propose a replacement
paradigm for data extraction. During this extraction
framework, intermediate output of every text process part is
keep so solely the improved part has got to be deployed to
the whole corpus. Extraction is then performed on each the
antecedently processed knowledge from the unchanged
elements moreover because the updated knowledge generated
by the improved part. Performing arts such quite progressive
extraction may end up in a very tremendous reduction of
interval. to comprehend this new data extraction framework,
we have a tendency to propose to decide on management
systems over file-based storage systems to deal with the
dynamic extraction wants. Existing extraction frameworks
don't offer the capabilities of managing intermediate
processed knowledge like dissect trees and linguistics data.
This results in the necessity of reprocessing of the whole text
assortment, which might be computationally dearly-won. On
the opposite hand, by storing the intermediate processed
knowledge as in our novel framework, introducing new data
are often issued with easy SQL insert statements on prime of
the processed knowledge. With the utilization of dissect
trees, our framework is best suited for performing arts
extraction on text corpus written in natural sentences like the
medical specialty literature. As indicated in our experiments,
our increment extraction approach saves rather more time
compared to performing arts extraction by 1st process every
sentence one-at-a-time with linguistic parsers so different
elements.

This comes at the value of overheads like the storage of the
dissect trees and also the linguistics data, that takes up one.5
TB of area for seventeen million abstracts for the dissect tree
info. Within the case once the computer program fails to
come up with dissect tree for a sentence, our system
generates a “replacement dissect tree” that has the node STN
because the root with the words within the sentence because
the youngsters of the basis node. This enables PTQL queries
to be applied to sentences that are incomplete or nonchalantly
written, which might seem often in net documents. Options
like horizontal axis and proximity conditions are often most
helpful for performing arts extraction on replacement dissect
trees.

One amongst the most contributions of our work is PTQL
that permits data extraction over dissect trees. Whereas our
current focus is per-sentence extraction, it's vital to note that
the source language itself is capable of process patterns
across multiple sentences. By storing documents within the
type of dissect trees, within which the node DOC is drawn
because the root of the document and also the sentences

drawn by the nodes STN because the descendants. As shown
within the sample queries illustrated in Table one, PTQL has
the power to perform a spread of knowledge extraction tasks
by taking advantage of dissect trees not like different
question languages. Currently, PTQL lacks the support of
common options like regular expression as often employed
by entity extraction task. PTQL conjointly doesn't offer the
power to reason statistics across multiple extractions like
taking redundancy under consideration for reinforcing the
arrogance of Associate in nursing extracted truth.

For future work, we'll extend the support of different parsers
by providing wrappers of different dependency parsers and
theme, like Pro3Gres and also the Stanford Dependency
theme, so they will be keep in PTDB and queried
victimization PTQL. We’ll expand the capabilities of PTQL,
like the support of standard expression and also the
utilization of redundancy to reason confidence of the
extracted data.

3.3 Stemming Algorithm

One technique for rising IR performance is to supply
searchers with ways in which of finding morphological
variants of search terms. If, for instance, a searcher enters the
term stemming as a part of a question , it's possible that he or
she's going to even be inquisitive about such variants as
stemmed and stem. We tend to use the term conflation, which
means the act of fusing or combining, because the general
term for the method of matching morphological term
variants. Conflation are often either manual--using some
quite regular expressions or automatic, via programs referred
to as stemmers. Stemming is additionally utilized in IR to cut
back the dimensions of index files. Since one stem usually
corresponds to many full terms, by storing stems rather than
terms, compression factors of over fifty p.c are often
achieved.

The advantage of stemming at assortment time is potency and
index file compression--since index terms square measure
already stemmed, this operation needs no resources at search
time, and therefore the index file are compressed as
represented higher than. The disadvantage of assortment time
stemming is that info regarding the total terms are lost, or
extra storage are needed to store each the stemmed and
unstemmed forms.

Below Figure shows taxonomy for stemming algorithms.
There square measure four automatic approaches. Affix
removal algorithms take away suffixes and/or prefixes from
terms going a stem. These algorithms typically conjointly
rework the resultant stem. The name stemmer derives from
this technique, that is that the most typical. Successor
selection stemmers use the frequencies of letter sequences
during a body of text because the basis of stemming. The n-
gram technique conflates terms supported the quantity of
diagrams or n-grams they share. Terms and their
corresponding stems can even be hold on during a table.
Stemming is then done via lookups within the table. These
strategies square measure represented below.

Paper ID: 020131474 505

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

Figure 1: Strategies Square Measure

4. Result

Figure 2: Shows Result

Figure 3: Shows the graph reprasentation

5. Performance & Difference between Existing

and projected System

1. Compared to existing system the projected system has
reduced the time interval.

Disadvantages
Do not give capabilities for managing intermediate processed
knowledge.

Lead to the necessity for reprocessing of entire text
assortment which might be computationally pricy.

Proposed question analysis and Optimization:

To evaluate PTQL queries on PTDB:

The question Translator generates SQL queries from PTQL
queries.

Optimizations for every PTQL query:

• The Filter module 1st generates associate degree keyword-

based question to expeditiously prune moot sentences.
• The question Translator generates a SQL question similar

to the PTQL question.
• Performs the particular extraction solely on relevant

sentences

6. Conclusion and Future Work

Existing extraction frameworks don't give the capabilities of
managing intermediate processed information like dissect
trees and linguistics data. This ends up in the requirement of
reprocessing of the complete text assortment, which may be
computationally overpriced. On the opposite hand, by storing
the intermediate processed information as in our novel
framework, introducing new data will be issued with easy
SQL insert statements on high of the processed information.
With the employment of dissect trees, our framework is most
fitted for performing arts extraction on text corpus written in
natural sentences like the medicine literature. As indicated in
our experiments, our increment extraction approach saves
way more time compared to performing arts extraction by 1st
process every sentence one-at-a-time with linguistic parsers
then different parts.

This comes at the price of overheads like the storage of the
dissect trees and therefore the linguistics data, that takes up
one.5 TB of house for seventeen million abstracts for the
dissect tree information. Within the case once the program
fails to come up with dissect tree for a sentence, our system
generates a “replacement dissect tree” that has the node STN
because the root with the words within the sentence because
the youngsters of the foundation node. This enables PTQL
queries to be applied to sentences that square measure
incomplete or nonchalantly written, which may seem of times
in net documents. Options like horizontal axis and proximity
conditions will be most helpful for performing arts extraction
on replacement dissect trees. One in all the most
contributions of our work is PTQL that allows data extraction
over dissects trees.

While our current focus is per-sentence extraction, it's vital to
note that the search language itself is capable of process
patterns across multiple sentences. By storing documents
within the type of dissect trees, during which the node DOC
is drawn because the root of the document and therefore the
sentences drawn by the nodes STN because the descendants.
PTQL has the flexibility to perform a spread of data
extraction tasks by taking advantage of dissect trees not like
different question languages. Currently, PTQL lacks the

Paper ID: 020131474 506

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

support of common options like regular expression as of
times employed by entity extraction task. PTQL additionally
doesn't give the flexibility to reason statistics across multiple
extractions like taking redundancy into consideration for
enhancing the boldness of AN extracted truth. For future
work, we'll extend the support of different parsers by
providing wrappers of different dependency parsers and
theme, like Pro3Gres and therefore the Stanford Dependency
theme, so they will be keep in PTDB and queried
mistreatment PTQL. We’ll expand the capabilities of PTQL,
like the support of standard expression and therefore the
utilization of redundancy to reason confidence of the
extracted data.

7. Acknowledgment

We are grateful to express sincere thanks to our faculties who
gave support and special thanks to our department of
Information Technology, SRM University for providing
facilities that were offered to us for carrying out this project.

References

[1] D. Ferrucci and A. Lally, “UIMA: An Architectural

Approach to Unstructured Information Processing in the
Corporate Research Environment,” Natural Language
Eng., vol. 10, nos. 3/4, pp. 327- 348, 2004.

[2] H. Cunningham, D. Maynard, K. Bontcheva, and V.
Tablan, “GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications,” Proc. 40th Ann. Meeting of the ACL,
2002.

[3] D. Grinberg, J. Lafferty, and D. Sleator, “A Robust
Parsing Algorithm for Link Grammars,” Technical
Report CMU-CS-TR- 95-125, Carnegie Mellon Univ.
1995.

[4] F. Chen, A. Doan, J. Yang, and R. Ramakrishnan,
“Efficient Information Extraction over Evolving Text
Data,” Proc IEEE 24th Int’l Conf. Data Eng. (ICDE
’08), pp. 943-952, 2008.

[5] F. Chen, B. Gao, A. Doan, J. Yang, and R.
Ramakrishnan, “Optimizing Complex Extraction
Programs over Evolving Text

[6] Data,” Proc 35th ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’09), pp. 321-334,
2009.

[7] S. Bird et al., “Designing and Evaluating an XPath
Dialect for Linguistic Queries,” Proc 22nd Int’l Conf.
Data Eng. (ICDE ’06), 2006.

[8] “XQuery 1.0: An XML Query Language,”
http://www.w3.org/XML/Query, June 2001.

[9] C. Lai, “A Formal Framework for Linguistic Tree
Query,” Master’s thesis, Dept. of Computer Science and
Software Eng., Univ. of Melbourne, 2005.

[10] E. Agichtein and L. Gravano, “Querying Text Databases
for Efficient Information Extraction,” Proc. Int’l Conf.
Data Eng. (ICDE), pp. 113-124, 2003.

[11] M. Krallinger, F. Leitner, and A. Valencia, “Assessment
of the Second Biocreative PPI Task: Automatic
Extraction of Protein-Protein Interactions,” Proc. Second
BioCreative Challenge Evaluation Workshop, 2007.

Author Profile

Venkata Sudhakara Reddy. Chilakala was born in Andhra
Pradesh, India, 1991. He received the B. Tech Degree in Computer
Science and Engineering from Jawaharlal Nehru Technological
University Hyderabad branch, India in 2012. Currently, he is
studying his M. Tech in Database Systems at SRM University,
Tamil Nadu India. His research interests are in the area of Data
mining and Distributed Systems.

Hemavathi.D received B.E Degree in Computer Science and
Engineering from Crescent Engineering College, affiliated to
University of Madras, India in 2004 and M. Tech Degree in
Information Technology from SRM University, Tamil Nadu India
in 2009. She is now Assistant Professor (Sr. G) for information
Technology in SRM University, Tamil Nadu India. Her research
interest is Distributed Systems.

Paper ID: 020131474 507

