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Abstract: Mining high utility itemsets from a transactional database refers to the discovery of itemsets with high utility like profits. 
Efficient discovery of high utility itemsets from a transactional database is a crucial and difficult task. Given a transactional database 
and a profit table containing profit of each item present in the database, high utility itemsets can be discovered. In recent years, several 
approaches have been proposed for generating high utility itemsets, but they incur the problems of producing a large number of 
candidate itemsets for high utility itemsets. The situation may become worse when the database contains lots of long transactions or lots 
of unpromising items. In this paper, we propose HUP-Tree (High Utility Pattern Tree), for maintaining information of high utility
itemsets, which is then mined to produce high utility itemsets. The proposed methods reduce the number of candidate sets efficiently and 
improve the mining performance in terms of execution time and space requirement. This approach is quite effective especially when 
transactions contain lots of unpromising items 
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1.Introduction

Discovering useful patterns hidden in a database plays an 
essential role in several data mining tasks, such as frequent 
pattern mining, association rule mining, and high utility 
pattern mining. Among them, frequent pattern mining [1], 
[14], [21] is a fundamental research topic with wide data 
mining applications. In market analysis, mining frequent 
itemsets from a transaction database refers to the discovery 
of the itemsets which frequently appear together in the 
transactions. Relative importance of each item is not 
considered in frequent pattern mining. To address this 
problem, weighted association rule mining was proposed [4], 
[11]. In this framework, weights of items, such as unit profits 
of items in transaction databases, are considered. With this 
concept, even if some items appear infrequently, they might 
still be found if they have high weights.

However, the unit profits and purchased quantities of items 
are not considered in the framework of frequent itemset 
mining or association rule mining. Hence, it cannot satisfy 
the requirement of the user who is interested in discovering 
the itemsets with high sales profits. In view of this, utility 
mining emerges as an important topic in data mining for 
discovering the itemsets with high utility like profits. 
Association rules mining (ARM) is one of the most widely 
used techniques in data mining and knowledge discovery 
and has tremendous applications like business, science and 
other domains. It is used to make the decisions about 
marketing activities such as promotional pricing or product 
placements.  

The basic meaning of utility is the profitability of items to 
the users. The utility of items in a transaction database 
consists of two aspects, i.e., the profit of distinct items, and 
number of the items in the transaction. The utility of an item 
is defined as the quantity multiplied by the unit profit of that 
item. By an itemset we simply mean a set of items. A 
transactional database consists of many transactions. Each 
transaction represents items purchased and their respective 
quantities. An itemset is called a high utility itemset if its 
utility is no less than a user specified threshold; otherwise, 

the itemset is called a low utility itemset. Mining high utility 
itemsets from databases is an important task which is 
essential to a wide range of applications such as, cross-
marketing in retail stores [3], [10], [19], [20] and business 
promotion in chain hypermarkets. 

A naive approach to solve this problem is to enumerate all 
itemsets from the databases by the principle of exhaustion. 
Obviously, this approach will encounter the large search 
space problem, especially when databases contain lots of 
long transactions or a low minimum utility threshold is set. 
Hence, how to effectively prune the search space and 
efficiently capture all high utility itemsets with no miss is a 
big challenge in utility mining. To address this issue and to 
find all high utility itemsets efficiently, we are proposing a 
new data structure named HUP- Tree, which can be used to 
store information about high utility itemsets, and then can be 
mined to produce high utility itemsets. With the proposed 
approach the size candidate sets can be reduced efficiently. 

2.Related Work 

Extensive studies have been proposed for mining frequent 
itemsets [1], [2], [13], [14], [21], [22]. One of the well-
known algorithms is Apriori algorithm [1], which is the 
pioneer for efficiently mining association rules from large 
databases. The tree-based approaches such as FP-Growth 
[14] were afterward proposed. It’s widely recognized that 
FP-Growth achieves a better performance than Apriori-based 
approaches since it finds frequent itemsets without 
generating any candidate itemset and it scans database just 
twice. However, in the framework of frequent itemset 
mining, the importance of items to users is not considered. 

Thus, the topic called weighted association rule mining was 
brought to attention [4], [11]. Cai et al. first proposed the 
concept of weighted items and weighted association rules 
[4]. However, since the framework of weighted association 
rules does not have downward closure property, mining 
performance cannot be improved. To address this problem, 
the concept of weighted downward closure property was 
developed. By using transaction weight, weighted support 
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can not only reflect the importance of an itemset but also 
maintain the downward closure property during the mining 
process. There are also many studies [6], [11] that have 
developed different weighting functions for weighted pattern 
mining. Although weighted association rule mining 
considers the importance of items, in some applications, such 
as transaction databases, items’ quantities in transactions are 
not taken into considerations yet. 

Thus, some methods were proposed for high utility mining 
[3], [5], [10], [16], [17], [19], [20] from the databases. One 
popular algorithm named Two-Phase algorithm [19] 
proposed by Liu et al. consists of two phases. In phase I, 
Two-Phase algorithm employs a breadth first search strategy 
to enumerate HTWUIs. It generates candidate itemsets of 
length k from HTWUIs of length (k-1) and prunes candidate 
itemsets by TWDC property. In each pass, HTWUIs and 
their estimated utility values i.e., TWUs, are computed by 
scanning database. After that, the complete set of HTWUIs 
is collected in phase I. In phase II, high utility itemsets and 
their utilities are identified from the HTWUIs by scanning 
original database once. Two-Phase algorithm generates too 
many candidates for HTWUIs and requires multiple database 
scans. To overcome this problem, Li et al. proposed an 
isolated items discarding strategy, abbreviated as IIDS, to 
reduce the number of candidates. By pruning isolated items 
during the level-wise search, the number of candidate 
itemsets for HTWUIs in phase I can be reduced effectively. 
However, this approach still scans database multiple times 
and uses a candidate generation-and-test scheme to find high 
utility itemsets. 

To avoid scanning database multiple times, Ahmed et al. 
proposed a tree-based algorithm, called IHUP [3], for mining 
high utility itemsets. They use an IHUP-Tree to maintain the 
information of high utility itemsets and transactions. Every 
node in IHUP-Tree consists of an item name, a support 
count, and a TWU value. The framework of the algorithm 
consists of three steps: (1) The construction of IHUP-Tree, 
(2) the generation of HTWUIs and (3) identification of high 
utility itemsets. In step 1, items in the transactions are 
rearranged in a fixed order such as lexicographic order, 
support descending order or TWU descending order. Then, 
the rearranged transactions are inserted into the IHUP-Tree.

IHUP and Two-Phase produce the same number of HTWUIs 
in phase I since they use transaction weighted utilization 
mining model to overestimate the utilities of the itemsets. To 
overcome this model Vincent et al proposed a tree structure 
[20] and some strategies to reduce overestimate utility values 
of the itemsets. But this still produces too many candidate 
sets. When lots of unpromising items occur together in many 
transactions, their transaction utility and TWU will be high 
and they may be included in the candidate set. Similar 
situation also arises when a low utility item occurs most of 
the times with a very high utility item; then that item will 
also be included in the candidate set. This model may 
overestimate too many low utility itemsets as HTWUIs and 
produce too many candidate itemsets.  

Such a large number of HTWUIs degrades the mining 
performance in phase I in terms of execution time and 
memory consumption. Besides, the number of HTWUIs in 

phase I also affects the performance of the algorithms in 
phase II since the more HTWUIs are generated in phase I, 
the more execution time is required for identifying high 
utility itemsets in phase II. As stated above, the number of 
HTWUIs generated in phase I form a crucial problem to the 
performance of algorithms.  

By applying the proposed strategies, the number of 
candidates generated in phase I can be reduced effectively 
and the high utility itemsets can be identified more 
efficiently since the number of itemsets needed to be 
checked in phase II is highly reduced in phase I. 

3.Proposed Method 

3.1 Problem Statement 

Given a transaction database D and a user-specified 
minimum utility threshold “minimum utility”, the problem of 
mining high utility itemsets from D is to find the complete 
set of the itemsets whose utilities are larger than or equal to 
minimum utility.

3.2 Definitions

Suppose we are given a database D as shown in Table 1. 
This is a transactional database containing a number of 
transactions.

Table 1: An example database 
TID Transaction TU
T1 (A,1) (C,10) (D,1) 17
T2 (A,2) (C,6) (E,2) (G,5) 27
T3 (A,2) (B,2) (D,6) (E,2) (F,1) 37
T4 (B,4) (C,13) (D,3) (E,1) 30
T5 (B,2) (C,4) (E,1) (G,2) 13
T6 (A,1) (B, 1) (C,1) (D,1) (H,2) 12

Each transaction is identified by a unique identifier called 
TID. Each transaction consists of the items purchased and 
the quantities of each item. For example the transaction T4

consists of 4 quantities of B, 13 quantities of C, 3 quantities 
of D and 1 quantity of E. There is another table called profit 
table as shown in Table 2. Profit table stores profit of each 
item present in the database. 

Table 2: An example profit table 
Item A B C D E F G H

Profit 5 2 1 2 3 5 1 1

Utility of an item ‘i’ in a transaction Td is denoted as U(i,Td
); and it is the profit of that item i in transaction Td. For e.g., 
U (A, T1) =1* 5 = 5; 

Utility of an itemset X in Td is denoted as u(X; Td) and is 
defined as the profit of X in Td; i.e., profit from all the items 
in itemset X in Td.
For eg., U(AD, T1)= U(A,T1) + U(D,T1) = 5 + 2 =7; 

Utility of an itemset X in the whole database D is denoted as 
U(X) and is defined as the sum of the utilities of X from all 
the transactions in which X is present. For eg, U (AD) = U 
(AD,T1) + U (AD,T3) + U(AD,T6) = 7 +22 + 7 =36; 
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If minimum utility is set to 30, (AD) is a high utility itemset. 

Transaction Utility (TU) of a transaction represents the 
utility or profit from that transaction. Transaction Utility of a 
transaction, say Ti is denoted as TU(Ti) and it is defined as 
the sum of the utilities of all items present in that transaction. 
For example TU of T4 is the sum of the utilities of B, C, D 
and E; i.e., 4 * 2 + 13 * 1 + 3 * 2 + 1 * 3=30 

Transaction weighted utility (TWU) of an item is the sum of 
the transaction utilities in which that item is present. So 
transaction-weighted utility of an itemset X is defined as the 
sum of the transaction utilities of all the transactions 
containing X, and is denoted as TWU (X). For example A is 
present in transactions T1, T2 and T3. So transaction weighted 
utility of A can be calculated as the sum of transaction 
utilities of T1, T2, T3 and T6 i.e., 17 + 27 + 37 + 12 = 93. 

After addressing the definitions about utility mining, we 
introduce the transaction-weighted downward closure 
(TWDC) which is proposed in [19]. An itemset X is called a 
high-transaction weighted utility itemset (HTWUI) if 
TWU(X) is no less than minimum utility. Transaction-
weighted downward closure property is defined as follows: 
For any itemset X, if X is not a HTWUI, any superset of X is 
a low utility itemset.  

Downward closure property can be maintained in utility 
mining by applying the transaction weighted utility. For 
example, TU (T2) = U (ACEG, T2) =27; TWU (G) = TU (T2)
+ TU (T5) = 27 + 13 = 40. If minimum utility is set to 30, 
{G} is a HTWUI. However, if minimum utility is set to 50, 
{G} and its supersets are not HTWUIs since TWU (G) must 
be no less than the TWUs of all {G}’s supersets. 

3.3 The proposed data structure: HUP- Tree 

The framework of the proposed methods consists of the 
following steps: 1) Scan the database to insert reduced 
transaction set into an HUP-Tree, 2) recursively generate 
PHUIs from HUP-Tree and 3) identify actual high utility 
itemsets from the set of PHUIs. Note that we use a new term 
“reduced transaction set” to distinguish the transaction set 
found by our methods from those using traditional method. 
By following our effective methods, the set of HTWUIs 
generated will become much smaller than the set of 
HTWUIs generated using traditional approach. 

To facilitate the mining performance and avoid scanning 
original database repeatedly, we use a compact tree structure, 
named HUP-Tree, to maintain the information of 
transactions and high utility itemsets. Some methods are 
applied to minimize the overestimated utilities stored in the 
nodes of HUP-Tree. In following sections, the elements of 
HUP-Tree are first defined. Next, how to insert reduced 
transaction set into HUP tree are introduced. Finally, how 
the proposed methods work is illustrated in detail by a 
running example. 

3.3.1 The Elements in HUP-Tree 
In an HUP-Tree, each node N consists of N.name, N.count, 
N.nu, N.mq, N.parent, N.hlink and a set of child nodes. 
N.name is the node’s item name. N.count is the node’s 

support count. N.nu is the node’s node utility, i.e., 
overestimated utility of the node. N.mq is the minimum node 
quantity. N.parent records the parent node of N. N.hlink is a 
node link which points to a node whose item name is the 
same as N.name. Here we have used a new term N.mq i.e., 
minimum node quantity, which will be explained in detail in 
the following section. A table named header table is 
employed to facilitate the traversal of HUP-Tree. In header 
table, each entry records an item name, an overestimated 
utility, and a link. The link points to the last occurrence of 
the node which has the same item as the entry in the HUP-
Tree. By following the links in header table and the nodes in 
HUP-Tree, the nodes having the same name can be traversed 
efficiently.

The construction of an HUP-Tree can be performed by 
scanning the original database. In the first scan, TU of each 
transaction is computed. At the same time, TWU of each 
single item is also accumulated. By TWDC property, an item 
and its supersets are unpromising to be high utility itemsets, 
if its TWU is less than the minimum utility threshold. Such 
an item is called an unpromising item. An item i is called a 
promising item if TWU (i) >= minimum utility. Otherwise it 
is called an unpromising item. An item is also called a 
promising item if its overestimated utility is no less than 
minimum utility. Otherwise it is called an unpromising item. 
Another important property is that if i is an unpromising 
item, i and all its supersets are not high utility itemsets. In 
other words we can say that only the supersets of promising 
items are possible to be high utility itemsets. 

Next step is removing unpromising items from the 
transaction and their utilities from the transaction’s TU. 
From this new reduced set of transactions and their reduced 
transaction utility, TWU of each remaining promising item is 
calculated. If any item’s TWU is less than minimum utility, it 
is also considered as an unpromising item and so that item is 
removed from the transactions and their utilities from TU. 
This process is repeated till we get no more unpromising 
items i.e., items whose TWU is less than minimum utility.
This framework may require a few database scans, but 
produces less number of HTWUIs in phase I. If we don’t do 
this step to reduce time spent on phase I a large number of 
HTWUIs will be produced and this will degrade the mining 
performance in phase II substantially in terms of execution 
time and memory consumption. That is, the number of 
HTWUIs in phase I also affects the performance of phase II 
since the more HTWUIs the algorithm generates in phase I, 
the more execution time for identifying high utility itemsets 
it requires in phase II. 

New transaction utility after subtracting unpromising items’ 
utility is called reduced transaction utility (Reduced TU). 
New transactions after pruning unpromising items is called 
reduced transactions. The items in the reduced transactions 
are arranged in the descending order of their TWU. By using 
these reduced transactions, not only less information is 
needed to be recorded in HUP-Tree, but also smaller 
overestimated utilities for itemsets are generated. Here we 
are using reduced TU to overestimate the utilities for 
itemsets instead of TWU. Since the utilities of unpromising 
items are excluded, reduced TU must be no larger than 
TWU. Therefore, the number of PHUIs must be no more 
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than that of HTWUIs generated with TWU [3], [19]. This 
proposed approach is quite effective especially when 
transactions contain lots of unpromising items. Besides that, 
this approach can be easily integrated into TWU-based 
algorithms [3], [19], [20]. Table 3 shows the reduced 
transactions and their reduced transaction utilities, which are 
to be inserted into HUP-Tree. 

Table 3: Reduced transactions 
TID Reduced transaction Reduced TU
T1 (C,10) (D,1) (A,1) 17
T2 (E,2) (C,6) (A,2) 22
T3 (E,2) (D,6) (A,2) (B,2) 32
T4 (E,1) (C,13) (D,3) (B,4) 30
T5 (E,1) (C,4) (B,2) 11
T6 (C,1) (D,1) (A,1) (B, 1) 10

It is shown in [3], [20] that the tree-based framework for 
high utility itemset mining applies the divide-and-conquer 
technique in mining processes. Thus, the search space can be 
divided into smaller subspaces. For example, in Fig. 1, the 
search space can be divided into the following subspaces: 
{B}-Tree, {A}-Tree without containing {B}, {D}-Tree 
without containing {B} and {A}, {C}-Tree without 
containing {B}, {A}, and {D}, and {E}-Tree without 
containing {B}, {A}, {D}, and {C}. It can be observed that 
in the subspace {A}-Tree, all paths are not related to {B} 
since the nodes {B} are below the nodes {A} in IHUP-Tree. 
In other words, the items that are descendant nodes of the 
item im will not appear in {im}- Tree; only the items that are 
ancestor nodes of im will appear in {im}- Tree. From this 
viewpoint, we propose a method for decreasing 
overestimated utilities of a node by removing the utilities of 
descendant nodes from their node utilities in HUP-Tree. The 
process is performed during the construction of the HUP-
Tree. By decreasing descendent node’s utility, the utilities of 
the nodes that are closer to the root of HUP-Tree are further 
reduced. This method is quite effective and especially 
suitable for the databases containing lots of long 
transactions. In other words, the more items a transaction 
contains, the more utilities can be discarded. On the contrary, 
traditional TWU mining model is not suitable for such 
databases since the more items a transaction contains, the 
higher TWU is. In following sections, we describe the 
process of constructing an HUP-Tree. 
All the reduced transactions are inserted into the tree one by 
one using the usual insertion procedure [3],[14], [20]. Let NR

be the root node of HUP-Tree. Let reduced transaction Td = 
{i1, i2, i3,…, in} be the first transaction to be inserted into the 
tree. The node for i1, i.e., Ni1, is created under NR and its 
support count is updated. Then the utilities of descendant 
nodes under Ni1, i.e., Ni2 to Nin are subtracted from utility of 
Ni1. Then the second item i2 in Td is inserted. Like that all 
items in Td is inserted. After inserting the first transaction 
Td, let Td+1 be the next transaction to be inserted. The first 
item in Td+1 is to be inserted first. We first check if a node 
already exists for that item as an immediate child of NR. If 
yes, its support count is incremented and corresponding 
utilities are updated. If such a node does not exist a new 
node is created under NR with support count as 1 and it 
utility as that items utility minus the utility of remaining 
items in the transaction. This is done till all the reduced 
transactions are inserted in to the HUP-Tree.  

Besides storing item name and its utility, minimum node 
quantity of that node called Nmq is also stored in each node 
of HUP-Tree. Minimum node quantity in each path is used 
to make the estimated pruning values closer to real utility 
values of the pruned items in database. Assume that Nx is 
the node which records the item x in the path p in a HUP-
Tree and Nx is composed of the items x from the set of 
transactions Trans-set (Tx). The minimum node quantity of x 
in p is denoted as mq(x,p). The mq(x,p) is defined as 
minimum of all the quantity values of x in each transaction 
in the Trans-set. Minimum node quantity for each node is 
calculated during the construction of HUP-Tree. First, we 
add an element, namely N.mq, into each node of HUP-Tree. 
N.mq is the minimum node quantity of N. Initially N.mq is 
set to a very high value. When N is traced, N.mq keeps track 
of the minimum value of N.name’s quantity in different 
transactions. If N.mq is larger than quantity (N.name, 
Tcurrent), N.mq is set to quantity (N.name, T. current). 
Figure1 shows the HUP-Tree with N. mq in each node. In 
Figure 1, N.utility is the first number, N.count is the middle 
number and N. mq is the last number in each node. 

Figure 1: HUP-Tree after inserting reduced transactions in 
Table 3 

An example is given to explain how to construct a HUP-
Tree. Consider the reduced transactions in Table 3 and the 
profit table in Table 2. After a transaction has been reduced, 
it is inserted into the HUP-Tree. When T1= {(C, 10) (D, 1) 
(A, 1)} is inserted, the first node NC is created with 
NC.item={C} and NC.count=1. N.nu is increased by reduced 
TU(T1) minus the minimum utilities (here minimum utilitiy 
of an item in a path in HUP tree is calculated as the product 
of N.mq and its unit profit from Table 2.) of the rest items 
that are behind {C} in T1,that is, NC:nu =17-(2*1+5*1) = 
10. Note that it can also be calculated as the sum of utilities 
of the items that are before item {D} in T1, i.e., NC.nu=
U({C};T1)= 10. The second node ND is created with 
ND.item ={D}, ND.count= 1 and ND.nu= reduced TU(T1)-
U({A},T1)=17- 5*1= 12. The third node NA is created with 
NA.item = {A}, NA:count = 1 and NA:nu = reducedTU(T1) = 
17. After inserting all reduced transactions by the same way, 
the global HUP-Tree shown in Fig. 1 is constructed. 
Comparing with the tree used in [3], [20], node utilities of 
the nodes in HUP-Tree are less. 

3.4 Mining the HUP- Tree 

After constructing the global HUP-tree, PHUIs can be 
generated by using the popular method of FP-Growth [14]. 
Using the proposed approach PHIs generated will be less 
compared to other algorithms. For the HUP-Tree in Figure1, 
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we can get the following PHUIs, i.e., {A}:75, {B}:83, 
{BD}: 60, {BDE}:56, {BE}:62 and {D}:55. 

4.Conclusion

In this paper, we have proposed a tree structure named HUP-
Tree for maintaining the information of high utility itemsets 
present in a transactional database. This HUP-Tree can be 
then used for mining high utility itemsets from transaction 
databases. PHUIs can be efficiently generated from HUP-
Tree with few database scans. Moreover, we have developed 
an approach to decrease overestimated utility and thus 
enhance the performance of utility mining. This algorithm 
will perform well by reducing both the search space and the 
number of candidates. This proposed algorithm, will 
outperform the state of-the-art algorithms substantially 
especially when databases contain lots of long transactions 
or when a low minimum utility threshold is used.  
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