
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

An Efficient Algorithm for High Utility Mining
Mahija K C1, Anu KS2

1, 2 MTech CSE, Department of Computer Science, KMCT College of Engineering, Manassery,
Calicut, Kerala, India

Abstract: Mining high utility itemsets from a transactional database refers to the discovery of itemsets with high utility like profits.
Efficient discovery of high utility itemsets from a transactional database is a crucial and difficult task. Given a transactional database
and a profit table containing profit of each item present in the database, high utility itemsets can be discovered. In recent years, several
approaches have been proposed for generating high utility itemsets, but they incur the problems of producing a large number of
candidate itemsets for high utility itemsets. The situation may become worse when the database contains lots of long transactions or lots
of unpromising items. In this paper, we propose HUP-Tree (High Utility Pattern Tree), for maintaining information of high utility
itemsets, which is then mined to produce high utility itemsets. The proposed methods reduce the number of candidate sets efficiently and
improve the mining performance in terms of execution time and space requirement. This approach is quite effective especially when
transactions contain lots of unpromising items

Keywords: High utility mining, data mining, transaction utility, transaction weighted utility, utility mining.

1.Introduction

Discovering useful patterns hidden in a database plays an
essential role in several data mining tasks, such as frequent
pattern mining, association rule mining, and high utility
pattern mining. Among them, frequent pattern mining [1],
[14], [21] is a fundamental research topic with wide data
mining applications. In market analysis, mining frequent
itemsets from a transaction database refers to the discovery
of the itemsets which frequently appear together in the
transactions. Relative importance of each item is not
considered in frequent pattern mining. To address this
problem, weighted association rule mining was proposed [4],
[11]. In this framework, weights of items, such as unit profits
of items in transaction databases, are considered. With this
concept, even if some items appear infrequently, they might
still be found if they have high weights.

However, the unit profits and purchased quantities of items
are not considered in the framework of frequent itemset
mining or association rule mining. Hence, it cannot satisfy
the requirement of the user who is interested in discovering
the itemsets with high sales profits. In view of this, utility
mining emerges as an important topic in data mining for
discovering the itemsets with high utility like profits.
Association rules mining (ARM) is one of the most widely
used techniques in data mining and knowledge discovery
and has tremendous applications like business, science and
other domains. It is used to make the decisions about
marketing activities such as promotional pricing or product
placements.

The basic meaning of utility is the profitability of items to
the users. The utility of items in a transaction database
consists of two aspects, i.e., the profit of distinct items, and
number of the items in the transaction. The utility of an item
is defined as the quantity multiplied by the unit profit of that
item. By an itemset we simply mean a set of items. A
transactional database consists of many transactions. Each
transaction represents items purchased and their respective
quantities. An itemset is called a high utility itemset if its
utility is no less than a user specified threshold; otherwise,

the itemset is called a low utility itemset. Mining high utility
itemsets from databases is an important task which is
essential to a wide range of applications such as, cross-
marketing in retail stores [3], [10], [19], [20] and business
promotion in chain hypermarkets.

A naive approach to solve this problem is to enumerate all
itemsets from the databases by the principle of exhaustion.
Obviously, this approach will encounter the large search
space problem, especially when databases contain lots of
long transactions or a low minimum utility threshold is set.
Hence, how to effectively prune the search space and
efficiently capture all high utility itemsets with no miss is a
big challenge in utility mining. To address this issue and to
find all high utility itemsets efficiently, we are proposing a
new data structure named HUP- Tree, which can be used to
store information about high utility itemsets, and then can be
mined to produce high utility itemsets. With the proposed
approach the size candidate sets can be reduced efficiently.

2.Related Work

Extensive studies have been proposed for mining frequent
itemsets [1], [2], [13], [14], [21], [22]. One of the well-
known algorithms is Apriori algorithm [1], which is the
pioneer for efficiently mining association rules from large
databases. The tree-based approaches such as FP-Growth
[14] were afterward proposed. It’s widely recognized that
FP-Growth achieves a better performance than Apriori-based
approaches since it finds frequent itemsets without
generating any candidate itemset and it scans database just
twice. However, in the framework of frequent itemset
mining, the importance of items to users is not considered.

Thus, the topic called weighted association rule mining was
brought to attention [4], [11]. Cai et al. first proposed the
concept of weighted items and weighted association rules
[4]. However, since the framework of weighted association
rules does not have downward closure property, mining
performance cannot be improved. To address this problem,
the concept of weighted downward closure property was
developed. By using transaction weight, weighted support

Paper ID: 020131430 213

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

can not only reflect the importance of an itemset but also
maintain the downward closure property during the mining
process. There are also many studies [6], [11] that have
developed different weighting functions for weighted pattern
mining. Although weighted association rule mining
considers the importance of items, in some applications, such
as transaction databases, items’ quantities in transactions are
not taken into considerations yet.

Thus, some methods were proposed for high utility mining
[3], [5], [10], [16], [17], [19], [20] from the databases. One
popular algorithm named Two-Phase algorithm [19]
proposed by Liu et al. consists of two phases. In phase I,
Two-Phase algorithm employs a breadth first search strategy
to enumerate HTWUIs. It generates candidate itemsets of
length k from HTWUIs of length (k-1) and prunes candidate
itemsets by TWDC property. In each pass, HTWUIs and
their estimated utility values i.e., TWUs, are computed by
scanning database. After that, the complete set of HTWUIs
is collected in phase I. In phase II, high utility itemsets and
their utilities are identified from the HTWUIs by scanning
original database once. Two-Phase algorithm generates too
many candidates for HTWUIs and requires multiple database
scans. To overcome this problem, Li et al. proposed an
isolated items discarding strategy, abbreviated as IIDS, to
reduce the number of candidates. By pruning isolated items
during the level-wise search, the number of candidate
itemsets for HTWUIs in phase I can be reduced effectively.
However, this approach still scans database multiple times
and uses a candidate generation-and-test scheme to find high
utility itemsets.

To avoid scanning database multiple times, Ahmed et al.
proposed a tree-based algorithm, called IHUP [3], for mining
high utility itemsets. They use an IHUP-Tree to maintain the
information of high utility itemsets and transactions. Every
node in IHUP-Tree consists of an item name, a support
count, and a TWU value. The framework of the algorithm
consists of three steps: (1) The construction of IHUP-Tree,
(2) the generation of HTWUIs and (3) identification of high
utility itemsets. In step 1, items in the transactions are
rearranged in a fixed order such as lexicographic order,
support descending order or TWU descending order. Then,
the rearranged transactions are inserted into the IHUP-Tree.

IHUP and Two-Phase produce the same number of HTWUIs
in phase I since they use transaction weighted utilization
mining model to overestimate the utilities of the itemsets. To
overcome this model Vincent et al proposed a tree structure
[20] and some strategies to reduce overestimate utility values
of the itemsets. But this still produces too many candidate
sets. When lots of unpromising items occur together in many
transactions, their transaction utility and TWU will be high
and they may be included in the candidate set. Similar
situation also arises when a low utility item occurs most of
the times with a very high utility item; then that item will
also be included in the candidate set. This model may
overestimate too many low utility itemsets as HTWUIs and
produce too many candidate itemsets.

Such a large number of HTWUIs degrades the mining
performance in phase I in terms of execution time and
memory consumption. Besides, the number of HTWUIs in

phase I also affects the performance of the algorithms in
phase II since the more HTWUIs are generated in phase I,
the more execution time is required for identifying high
utility itemsets in phase II. As stated above, the number of
HTWUIs generated in phase I form a crucial problem to the
performance of algorithms.

By applying the proposed strategies, the number of
candidates generated in phase I can be reduced effectively
and the high utility itemsets can be identified more
efficiently since the number of itemsets needed to be
checked in phase II is highly reduced in phase I.

3.Proposed Method

3.1 Problem Statement

Given a transaction database D and a user-specified
minimum utility threshold “minimum utility”, the problem of
mining high utility itemsets from D is to find the complete
set of the itemsets whose utilities are larger than or equal to
minimum utility.

3.2 Definitions

Suppose we are given a database D as shown in Table 1.
This is a transactional database containing a number of
transactions.

Table 1: An example database
TID Transaction TU
T1 (A,1) (C,10) (D,1) 17
T2 (A,2) (C,6) (E,2) (G,5) 27
T3 (A,2) (B,2) (D,6) (E,2) (F,1) 37
T4 (B,4) (C,13) (D,3) (E,1) 30
T5 (B,2) (C,4) (E,1) (G,2) 13
T6 (A,1) (B, 1) (C,1) (D,1) (H,2) 12

Each transaction is identified by a unique identifier called
TID. Each transaction consists of the items purchased and
the quantities of each item. For example the transaction T4

consists of 4 quantities of B, 13 quantities of C, 3 quantities
of D and 1 quantity of E. There is another table called profit
table as shown in Table 2. Profit table stores profit of each
item present in the database.

Table 2: An example profit table
Item A B C D E F G H

Profit 5 2 1 2 3 5 1 1

Utility of an item ‘i’ in a transaction Td is denoted as U(i,Td
); and it is the profit of that item i in transaction Td. For e.g.,
U (A, T1) =1* 5 = 5;

Utility of an itemset X in Td is denoted as u(X; Td) and is
defined as the profit of X in Td; i.e., profit from all the items
in itemset X in Td.
For eg., U(AD, T1)= U(A,T1) + U(D,T1) = 5 + 2 =7;

Utility of an itemset X in the whole database D is denoted as
U(X) and is defined as the sum of the utilities of X from all
the transactions in which X is present. For eg, U (AD) = U
(AD,T1) + U (AD,T3) + U(AD,T6) = 7 +22 + 7 =36;

Paper ID: 020131430 214

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

If minimum utility is set to 30, (AD) is a high utility itemset.

Transaction Utility (TU) of a transaction represents the
utility or profit from that transaction. Transaction Utility of a
transaction, say Ti is denoted as TU(Ti) and it is defined as
the sum of the utilities of all items present in that transaction.
For example TU of T4 is the sum of the utilities of B, C, D
and E; i.e., 4 * 2 + 13 * 1 + 3 * 2 + 1 * 3=30

Transaction weighted utility (TWU) of an item is the sum of
the transaction utilities in which that item is present. So
transaction-weighted utility of an itemset X is defined as the
sum of the transaction utilities of all the transactions
containing X, and is denoted as TWU (X). For example A is
present in transactions T1, T2 and T3. So transaction weighted
utility of A can be calculated as the sum of transaction
utilities of T1, T2, T3 and T6 i.e., 17 + 27 + 37 + 12 = 93.

After addressing the definitions about utility mining, we
introduce the transaction-weighted downward closure
(TWDC) which is proposed in [19]. An itemset X is called a
high-transaction weighted utility itemset (HTWUI) if
TWU(X) is no less than minimum utility. Transaction-
weighted downward closure property is defined as follows:
For any itemset X, if X is not a HTWUI, any superset of X is
a low utility itemset.

Downward closure property can be maintained in utility
mining by applying the transaction weighted utility. For
example, TU (T2) = U (ACEG, T2) =27; TWU (G) = TU (T2)
+ TU (T5) = 27 + 13 = 40. If minimum utility is set to 30,
{G} is a HTWUI. However, if minimum utility is set to 50,
{G} and its supersets are not HTWUIs since TWU (G) must
be no less than the TWUs of all {G}’s supersets.

3.3 The proposed data structure: HUP- Tree

The framework of the proposed methods consists of the
following steps: 1) Scan the database to insert reduced
transaction set into an HUP-Tree, 2) recursively generate
PHUIs from HUP-Tree and 3) identify actual high utility
itemsets from the set of PHUIs. Note that we use a new term
“reduced transaction set” to distinguish the transaction set
found by our methods from those using traditional method.
By following our effective methods, the set of HTWUIs
generated will become much smaller than the set of
HTWUIs generated using traditional approach.

To facilitate the mining performance and avoid scanning
original database repeatedly, we use a compact tree structure,
named HUP-Tree, to maintain the information of
transactions and high utility itemsets. Some methods are
applied to minimize the overestimated utilities stored in the
nodes of HUP-Tree. In following sections, the elements of
HUP-Tree are first defined. Next, how to insert reduced
transaction set into HUP tree are introduced. Finally, how
the proposed methods work is illustrated in detail by a
running example.

3.3.1 The Elements in HUP-Tree
In an HUP-Tree, each node N consists of N.name, N.count,
N.nu, N.mq, N.parent, N.hlink and a set of child nodes.
N.name is the node’s item name. N.count is the node’s

support count. N.nu is the node’s node utility, i.e.,
overestimated utility of the node. N.mq is the minimum node
quantity. N.parent records the parent node of N. N.hlink is a
node link which points to a node whose item name is the
same as N.name. Here we have used a new term N.mq i.e.,
minimum node quantity, which will be explained in detail in
the following section. A table named header table is
employed to facilitate the traversal of HUP-Tree. In header
table, each entry records an item name, an overestimated
utility, and a link. The link points to the last occurrence of
the node which has the same item as the entry in the HUP-
Tree. By following the links in header table and the nodes in
HUP-Tree, the nodes having the same name can be traversed
efficiently.

The construction of an HUP-Tree can be performed by
scanning the original database. In the first scan, TU of each
transaction is computed. At the same time, TWU of each
single item is also accumulated. By TWDC property, an item
and its supersets are unpromising to be high utility itemsets,
if its TWU is less than the minimum utility threshold. Such
an item is called an unpromising item. An item i is called a
promising item if TWU (i) >= minimum utility. Otherwise it
is called an unpromising item. An item is also called a
promising item if its overestimated utility is no less than
minimum utility. Otherwise it is called an unpromising item.
Another important property is that if i is an unpromising
item, i and all its supersets are not high utility itemsets. In
other words we can say that only the supersets of promising
items are possible to be high utility itemsets.

Next step is removing unpromising items from the
transaction and their utilities from the transaction’s TU.
From this new reduced set of transactions and their reduced
transaction utility, TWU of each remaining promising item is
calculated. If any item’s TWU is less than minimum utility, it
is also considered as an unpromising item and so that item is
removed from the transactions and their utilities from TU.
This process is repeated till we get no more unpromising
items i.e., items whose TWU is less than minimum utility.
This framework may require a few database scans, but
produces less number of HTWUIs in phase I. If we don’t do
this step to reduce time spent on phase I a large number of
HTWUIs will be produced and this will degrade the mining
performance in phase II substantially in terms of execution
time and memory consumption. That is, the number of
HTWUIs in phase I also affects the performance of phase II
since the more HTWUIs the algorithm generates in phase I,
the more execution time for identifying high utility itemsets
it requires in phase II.

New transaction utility after subtracting unpromising items’
utility is called reduced transaction utility (Reduced TU).
New transactions after pruning unpromising items is called
reduced transactions. The items in the reduced transactions
are arranged in the descending order of their TWU. By using
these reduced transactions, not only less information is
needed to be recorded in HUP-Tree, but also smaller
overestimated utilities for itemsets are generated. Here we
are using reduced TU to overestimate the utilities for
itemsets instead of TWU. Since the utilities of unpromising
items are excluded, reduced TU must be no larger than
TWU. Therefore, the number of PHUIs must be no more

Paper ID: 020131430 215

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

than that of HTWUIs generated with TWU [3], [19]. This
proposed approach is quite effective especially when
transactions contain lots of unpromising items. Besides that,
this approach can be easily integrated into TWU-based
algorithms [3], [19], [20]. Table 3 shows the reduced
transactions and their reduced transaction utilities, which are
to be inserted into HUP-Tree.

Table 3: Reduced transactions
TID Reduced transaction Reduced TU
T1 (C,10) (D,1) (A,1) 17
T2 (E,2) (C,6) (A,2) 22
T3 (E,2) (D,6) (A,2) (B,2) 32
T4 (E,1) (C,13) (D,3) (B,4) 30
T5 (E,1) (C,4) (B,2) 11
T6 (C,1) (D,1) (A,1) (B, 1) 10

It is shown in [3], [20] that the tree-based framework for
high utility itemset mining applies the divide-and-conquer
technique in mining processes. Thus, the search space can be
divided into smaller subspaces. For example, in Fig. 1, the
search space can be divided into the following subspaces:
{B}-Tree, {A}-Tree without containing {B}, {D}-Tree
without containing {B} and {A}, {C}-Tree without
containing {B}, {A}, and {D}, and {E}-Tree without
containing {B}, {A}, {D}, and {C}. It can be observed that
in the subspace {A}-Tree, all paths are not related to {B}
since the nodes {B} are below the nodes {A} in IHUP-Tree.
In other words, the items that are descendant nodes of the
item im will not appear in {im}- Tree; only the items that are
ancestor nodes of im will appear in {im}- Tree. From this
viewpoint, we propose a method for decreasing
overestimated utilities of a node by removing the utilities of
descendant nodes from their node utilities in HUP-Tree. The
process is performed during the construction of the HUP-
Tree. By decreasing descendent node’s utility, the utilities of
the nodes that are closer to the root of HUP-Tree are further
reduced. This method is quite effective and especially
suitable for the databases containing lots of long
transactions. In other words, the more items a transaction
contains, the more utilities can be discarded. On the contrary,
traditional TWU mining model is not suitable for such
databases since the more items a transaction contains, the
higher TWU is. In following sections, we describe the
process of constructing an HUP-Tree.
All the reduced transactions are inserted into the tree one by
one using the usual insertion procedure [3],[14], [20]. Let NR

be the root node of HUP-Tree. Let reduced transaction Td =
{i1, i2, i3,…, in} be the first transaction to be inserted into the
tree. The node for i1, i.e., Ni1, is created under NR and its
support count is updated. Then the utilities of descendant
nodes under Ni1, i.e., Ni2 to Nin are subtracted from utility of
Ni1. Then the second item i2 in Td is inserted. Like that all
items in Td is inserted. After inserting the first transaction
Td, let Td+1 be the next transaction to be inserted. The first
item in Td+1 is to be inserted first. We first check if a node
already exists for that item as an immediate child of NR. If
yes, its support count is incremented and corresponding
utilities are updated. If such a node does not exist a new
node is created under NR with support count as 1 and it
utility as that items utility minus the utility of remaining
items in the transaction. This is done till all the reduced
transactions are inserted in to the HUP-Tree.

Besides storing item name and its utility, minimum node
quantity of that node called Nmq is also stored in each node
of HUP-Tree. Minimum node quantity in each path is used
to make the estimated pruning values closer to real utility
values of the pruned items in database. Assume that Nx is
the node which records the item x in the path p in a HUP-
Tree and Nx is composed of the items x from the set of
transactions Trans-set (Tx). The minimum node quantity of x
in p is denoted as mq(x,p). The mq(x,p) is defined as
minimum of all the quantity values of x in each transaction
in the Trans-set. Minimum node quantity for each node is
calculated during the construction of HUP-Tree. First, we
add an element, namely N.mq, into each node of HUP-Tree.
N.mq is the minimum node quantity of N. Initially N.mq is
set to a very high value. When N is traced, N.mq keeps track
of the minimum value of N.name’s quantity in different
transactions. If N.mq is larger than quantity (N.name,
Tcurrent), N.mq is set to quantity (N.name, T. current).
Figure1 shows the HUP-Tree with N. mq in each node. In
Figure 1, N.utility is the first number, N.count is the middle
number and N. mq is the last number in each node.

Figure 1: HUP-Tree after inserting reduced transactions in
Table 3

An example is given to explain how to construct a HUP-
Tree. Consider the reduced transactions in Table 3 and the
profit table in Table 2. After a transaction has been reduced,
it is inserted into the HUP-Tree. When T1= {(C, 10) (D, 1)
(A, 1)} is inserted, the first node NC is created with
NC.item={C} and NC.count=1. N.nu is increased by reduced
TU(T1) minus the minimum utilities (here minimum utilitiy
of an item in a path in HUP tree is calculated as the product
of N.mq and its unit profit from Table 2.) of the rest items
that are behind {C} in T1,that is, NC:nu =17-(2*1+5*1) =
10. Note that it can also be calculated as the sum of utilities
of the items that are before item {D} in T1, i.e., NC.nu=
U({C};T1)= 10. The second node ND is created with
ND.item ={D}, ND.count= 1 and ND.nu= reduced TU(T1)-
U({A},T1)=17- 5*1= 12. The third node NA is created with
NA.item = {A}, NA:count = 1 and NA:nu = reducedTU(T1) =
17. After inserting all reduced transactions by the same way,
the global HUP-Tree shown in Fig. 1 is constructed.
Comparing with the tree used in [3], [20], node utilities of
the nodes in HUP-Tree are less.

3.4 Mining the HUP- Tree

After constructing the global HUP-tree, PHUIs can be
generated by using the popular method of FP-Growth [14].
Using the proposed approach PHIs generated will be less
compared to other algorithms. For the HUP-Tree in Figure1,

Paper ID: 020131430 216

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

we can get the following PHUIs, i.e., {A}:75, {B}:83,
{BD}: 60, {BDE}:56, {BE}:62 and {D}:55.

4.Conclusion

In this paper, we have proposed a tree structure named HUP-
Tree for maintaining the information of high utility itemsets
present in a transactional database. This HUP-Tree can be
then used for mining high utility itemsets from transaction
databases. PHUIs can be efficiently generated from HUP-
Tree with few database scans. Moreover, we have developed
an approach to decrease overestimated utility and thus
enhance the performance of utility mining. This algorithm
will perform well by reducing both the search space and the
number of candidates. This proposed algorithm, will
outperform the state of-the-art algorithms substantially
especially when databases contain lots of long transactions
or when a low minimum utility threshold is used.

References

[1] A. R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules,” Proc. 20th Int’l Conf. Very
Large Data Bases (VLDB), pp. 487-499, 1994.

[2] R. Agrawal and R. Srikant, “Mining Sequential
Patterns,” Proc. 11th Int’l Conf. Data Eng., pp. 3-14,
Mar. 1995.

[3] C.F. Ahmed, S.K. Tanbeer, B.-S. Jeong, and Y.-K.
Lee, “Efficient Tree Structures for High Utility Pattern
Mining in IncrementalDatabases,” IEEE Trans.
Knowledge and Data Eng., vol. 21, no. 12, pp. 1708-1721,
Dec. 2009.

[4] C.H. Cai, A.W.C. Fu, C.H. Cheng, and W.W. Kwong,
“Mining Association Rules with Weighted Items,”
Proc. Int’l Database Eng. and Applications
Symp.(IDEAS ’98), pp. 68-77, 1998.

[5] R. Chan, Q. Yang, and Y. Shen, “Mining High Utility
Itemsets,” Proc. IEEE Third Int’l Conf. Data Mining,
pp. 19-26, Nov. 2003.

[6] J.H. Chang, “Mining Weighted Sequential Patterns in a
Sequence Database with a Time-Interval Weight,”
Knowledge-Based Systems, vol. 24, no. 1, pp. 1-9,
2011.

[7] M.-S. Chen, J.-S. Park, and P.S. Yu, “Efficient Data
Mining for Path Traversal Patterns,” IEEE Trans.
Knowledge and Data Eng., vol. 10, no. 2, pp. 209-221,
Mar. 1998.

[8] C. Creighton and S. Hanash, “Mining Gene Expression
Databases for Association Rules,” Bioinformatics, vol.
19, no. 1, pp. 79-86, 2003.

[9] M.Y. Eltabakh, M. Ouzzani, M.A. Khalil, W.G. Aref,
and A.K. Elmagarmid, “Incremental Mining for
Frequent Patterns in Evolving Time Series Databases,”
Technical Report CSD TR#08-02, Purdue Univ., 2008.

[10] A. Erwin, R.P. Gopalan, and N.R. Achuthan, “Efficient
Mining of High Utility Itemsets from Large Data Sets,”
Proc. 12th Pacific-Asia Conf. Advances in Knowledge
Discovery and Data Mining (PAKDD), pp. 554-561,
2008.

[11] F. Tao, F. Murtagh, and M. Farid, “Weighted
Association Rule Mining Using Weighted Support and
Significance Framework,” Proc. ACM SIGKDD Conf.
Knowledge Discovery and Data Mining

[12] (KDD ’03), pp. 661-666, 2003.J. Han, G. Dong, and Y.
Yin, “Efficient Mining of Partial Periodic Patterns in
Time Series Database,” Proc. Int’l Conf. on Data Eng.,
pp. 106-115, 1999.

[13] J. Han and Y. Fu, “Discovery of Multiple-Level
Association Rules from Large Databases,” Proc. 21th
Int’l Conf. Very Large Data Bases, pp. 420-431, Sept.
1995.

[14] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns
without Candidate Generation,” Proc. ACM-SIGMOD
Int’l Conf. Management of Data, pp. 1-12, 2000.

[15] S.C. Lee, J. Paik, J. Ok, I. Song, and U.M. Kim,
“Efficient Mining of User Behaviors by Temporal
Mobile Access Patterns,” Int’l J. Computer Science
Security, vol. 7, no. 2, pp. 285-291, 2007.

[16] H.F. Li, H.Y. Huang, Y.C. Chen, Y.J. Liu, and S.Y.
Lee, “Fast and Memory Efficient Mining of High
Utility Itemsets in Data Streams,” Proc. IEEE Eighth
Int’l Conf. on Data Mining, pp. 881- 886, 2008.

[17] Y.-C. Li, J.-S. Yeh, and C.-C. Chang, “Isolated Items
Discarding Strategy for Discovering High Utility
Itemsets,” Data and KnowledgeEng., vol. 64, no. 1, pp.
198-217, Jan. 2008.

[18] C.H. Lin, D.Y. Chiu, Y.H. Wu, and A.L.P. Chen,
“Mining Frequent Itemsets from Data Streams with a
Time-Sensitive Sliding Window,” Proc. SIAM Int’l
Conf. Data Mining (SDM ’05), 2005.

[19] Y. Liu, W. Liao, and A. Choudhary, “A Fast High
Utility Itemsets Mining Algorithm,” Proc. Utility-Based
Data Mining Workshop, 2005.

[20] V.S. Tseng, C.-W. Wu, B.-E. Shie, and P.S. Yu, “UP-
Growth: An Efficient Algorithm for High Utility
Itemsets Mining,” Proc. 16th ACM SIGKDD Conf.
Knowledge Discovery and Data Mining (KDD’10), pp.
253-262, 2010.

[21] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang,
“H-Mine: Fast and Space-Preserving Frequent Pattern
Mining in Large Databases,” IIE Trans. Inst. of
Industrial Engineers, vol. 39, no. 6, pp. 593-605, June
2007.

[22] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.
Moal, and M.C. Hsu, “Mining Sequential Patterns by
Pattern-Growth: The Prefixspan Approach,” IEEE
Trans. Knowledge and Data Eng., vol.16, no.10, pp.
1424-1440, Oct. 2004.

Author Profile

Mahija K C received the B.Tech in Computer Science
and Engineering from Co-operative Institute of
Technology, Vadakara (CUSAT) in 2003. She had
worked in National institute of Technology, Calicut

and AWH Engineering College, Calicut as Lecturer in the
Department of Computer Science. She is currently doing last
semester in M.Tech Computer Science and Engineering from
KMCT College of Engineering, Calicut (Calicut University).

Paper ID: 020131430 217

