
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

Intelligent Fuzzy Type-Ahead Search in XML Data
Supriya Chaudhari1, Vaishali Deshmukh2

1 SGBA University, Department of Computer Science & Engineering, PRMIT&R, Badnera, India

2 Professor SGBA University, Department of Computer Science & Engineering, PRMIT&R, Badnera, India

Abstract: In a traditional keyword-search system over XML data, a user composes a keyword query, submits it to the system, and
retrieves relevant answers. In the case where the user has limited knowledge about the data, often the user feels “left in the dark” when
issuing queries, and has to use a try-and-see approach for finding information. In this paper, we study fuzzy type-ahead search in XML
data, a new information-access paradigm in which the system searches XML data on the fly as the user types in query keywords. It
allows users to explore data as they type, even in the presence of minor errors of their keywords. Our proposed method has the following
features: 1) Search as you type: It extends Auto complete by supporting queries with multiple keywords in XML data.2) Fuzzy: It can
find high-quality answers that have keywords matching query keywords approximately. 3) Intelligent: Our effective index structures,
searching algorithms and materialized views can achieve a very high interactive speed. Answering queries using materialized views has
been well studied in the context of structured queries and has shown significant performance benefits.

Keywords: XML, keyword search, type-ahead search, fuzzy search, Materialized views, Data warehouses, Clustering, Complex data.

1. Introduction

Traditional methods use query languages such as XPath and
XQuery to query XML data. These methods are powerful
but unfriendly to non expert users. First, these query
languages are hard to comprehend for non database users.
For example, XQuery is fairly complicated to grasp. Second,
these languages require the queries to be posed against the
underlying, sometimes complex, database schemas.
Fortunately, keyword search is proposed as an alternative
means for querying XML data, which is simple and yet
familiar to most Internet users as it only requires the input of
keywords. Keyword search is a widely accepted search
paradigm for querying document systems and the World
Wide Web. One important advantage of keyword search is
that it enables users to search information without knowing a
complex query language such as XPath or XQuery, or
having prior knowledge about the structure of the underlying
data.

In a traditional keyword-search system over XML data, a
user composes a query, submits it to the system, and
retrieves relevant answers from XML data. This
information- access paradigm requires the user to have
certain knowledge about the structure and content of the
underlying data repository. In the case where the user has
limited knowledge about the data, often the user feels “left
in the dark” when issuing queries, and has to use a try-and-
see approach for finding information. He tries a few possible
keywords, goes through the returned results, modifies the
keywords, and reissues a new query. He needs to repeat this
step multiple times to find the information, if lucky enough.
This search interface is neither efficient nor user friendly.
Many systems are introducing various features to solve this
problem. One of the commonly used methods is Auto
complete, which predicts a word or phrase that the user may
type in based on the partial string the user has typed. More
and more websites support this feature. One limitation of
Auto complete is that the system treats a query with multiple
keywords as a single string, thus, it does not allow these
keywords to appear at different places.

Type-ahead search can provide users instant feedback as
users type in keywords, and it does not require users to type
in complete keywords. Type-ahead search can help users
browse the data, save users typing effort, and efficiently find
the information. They also studied type-ahead search in
relational databases [1]. However, existing methods cannot
search XML data in a type-ahead search manner, and it is
not trivial to extend existing techniques to support fuzzy
type-ahead search in XML data. This is because XML
contains parent-child relationships, and we need to identify
relevant XML subtrees that capture such structural
relationships from XML data to answer keyword queries,
instead of single documents.

By avoiding computing query results directly from the
source data, exploiting materialized views has been proven
crucial for performance optimization in evaluating SQL
queries on databases and XPath/XQuery on XML. Caching
query results as materialized views in web applications can
also reduce the workload of servers and network traffic.
Given the benefits of materialized views in structured query
processing, it is a natural idea to leverage them to speed up
XML keyword search.

2. Literature Review

Keyword search in XML data has attracted great attention
recently. Xu and Papakonstantinou [2] proposed smallest
lowest common ancestor (SLCA) to improve search
efficiency. Sun et al. [6] studied multiway SLCA-based
keyword search to enhance search performance. Schema
free XQuery [4] employed the idea of meaningful LCA, and
proposed a stack-based sort-merge algorithm by considering
XML structures and incorporating a new function mlcas into
XQuery. XSEarch [3] focuses on the semantics and the
ranking of the results, and extends keyword search. It
employs the semantics of meaningful relation between XML
nodes to answer keyword queries, and two nodes are
meaningfully related if they are in a same set, which can be
given by administrators or users. Li et al. [7] proposed
valuable LCA (VLCA) to improve the meaningfulness and
completeness of answers and devised a new efficient

Paper ID: 020131367 159

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

algorithm to identify the answers based on a stack-based
algorithm. XKeyword [8] is proposed to offer keyword
proximity search over XML documents, which models XML
documents as graphs by considering IDREFs between XML
elements. Hristidis et al. [9] proposed grouped distance
minimum connecting tree (GDMCT) to answer keyword
queries, which groups the relevant subtrees to answer
keyword queries. It first identifies the minimum connected
tree, which is a subtree with minimum number of edges, and
then groups such trees to answer keyword queries. Shao et
al. [10] studied the problem of keyword search on XML
views.

Type-ahead search is a new topic to query relational
databases. Li et al. [1] studied type-ahead search in
relational databases, which allows searching on the
underlying relational databases on the fly as users type in
query keywords. Recently, there have been several papers
on selection of materialized views in the OLAP/Data. The
work by Baralis et al. [11] is also set in the context of

OLAP/Data Cube and does not consider traditional indexes
on base tables. For a given workload, they consider
materialized views that exactly match queries in the
workload, as well as a set of additional views that can
leverage commonality among queries in the workload. In the
context of SQL databases and workloads, the work by [12]
picks materialized views by examining the plan information
of queries.

2.1 Notations

An XML document can be modeled as a rooted and labeled
tree. A node v in the tree corresponds to an element in the
XML document and has a label. For two nodes u and v, we
use respectively) to denote that node u is
an ancestor (descendant, respectively) of node v. We use

to denote that or . For example,
consider the XML document in Fig. 1, we have paper (node
5) author (node 7) and paper (node 12) conf(node2).

Figure 1: An XML document.

A keyword query consists of a set of keywords {k1, k2,…. ,
kl}. For each keyword ki, we call the nodes in the tree that
contain the keyword the content nodes for ki. The ancestor
nodes1 of the content nodes are called the quasi-content
nodes of the keyword. For example, consider the XML
document in Fig.1, title (node 16) is a content node for
keyword “DB,” and conf (node 2) is a quasi-content node of
keyword “DB.”

3. Progressively Computing Top K Answers

3.1 Architecture

Figure 2: Architecture for compute top k answers

The user composes query and submits. The browser sends
the query to the server where the xml document, its index
structure and materialized views are lies in it. First the
keyword search begin with materialized view if word found
in view then server returns the results to user through
browser and if not then the ranking module ranks the nodes
that contain the keyword. The compute top k results uses
effective algorithms to compute top k results and the server
returns the results to user through browser.

Problem Formulation:

We formalize the problem of fuzzy type-ahead search in
XML data as follows:

Definition 1: (FUZZY TYPE-AHEAD SEARCH IN XML
DATA). Given an XML document D, a keyword query Q
={k1,k2,….kl} and an edit-distance threshold T. Let the
predicted-word set be Wk={w|w is a tokenized word in D
and there exists a prefix of w, ki

’,ed(ki,ki
’)<=T.} Let the

predicted answer set be RQ={r|r is a keyword-search result
of query {w1 Wk1, w2 Wk2 , . . . ,Wl Wkl. For the
keystroke that invokes Q, we return the top-k answers in RQ
for a given value k, ranked by their relevancy to Q.

Paper ID: 020131367 160

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

Let treat the data and query string as lowercase strings. Now
focus on how to efficiently find the predicted answers,
among which we can find the best top-k relevant answers
using a ranking function. There are two challenges to
support fuzzy type-ahead search in XML data. The first one
is how to interactively and efficiently identify the predicted
words that have prefixes similar to the input partial keyword
after each keystroke from the user. The second one is how to
progressively and effectively compute the top-k predicted
answers of a query with multiple keywords, especially when
there are many predicted words.

3.2 Methods for Keyword Search Over Xml Data

3.2.1 LCA based method
The lowest common ancestor (LCA) is a concept in graph
theory and computer science. Let T be a rooted tree with n
nodes. The lowest common ancestor between two nodes v
and w is defined as the lowest node in T that has both v and
w as descendants.

The LCA of v and w in T is the shared ancestor of v and w
that is located farthest from the root. There are different
ways to answer the query on an xml document; one
commonly used method is LCA based method [1]. Many
algorithms that use query over xml uses this method.
Content nodes are the parent node of the keyword. For
example consider keyword db in Fig.1 then content node of
db is node 13 and node16.The server contains index
structure of xml document which each node is letter in
keyword and leaf node contain all nodes that contain the
keyword this leaf node is called inverted list. Procedure:

 For keyword query the LCA based method retrieves
content nodes in xml that are in inverted lists.

 Identify the LCAs of content nodes in inverted list.
 Takes the sub tree rooted at LCAs as answer to the query

For example suppose the user typed the query “www db”
then the content nodes of db are{13,16} and for www are3 ,
the LCAs of these content nodes are nodes ,12,15,2,1.here
the nodes 3,13,12,15 are more relevant answers but nodes 2
and 1 are not relevant answers.

Limitation
 It gives irrelevant answers.
 The results are not of high quality.

3.2.2 ELCA based method
To address the limitation of LCA based method exclusive
LCA (ELCA)[4] is proposed. It states that an LCA is ELCA
if it is still an LCA after excluding its LCA descendents. for
example suppose the user typed the query “db tom” then the
content nodes of db are {13, 16} and for tom are {14.17},the
LCAs of these content nodes are nodes2,12,15,1.here the
ELCAs are 12,15.the subtree rooted with these nodes is
displayed which are relevant answers Node 2 is not an
ELCA as it is not an LCA after excluding nodes 12 and 15.

3.3 Ranking the Subtree

There are two ranking function to compute rank/score
between node n and keyword ki[2] 1) The case that n

contains ki. 2) The case that n does not contain ki but has a
descendant containing ki.

Case 1: n contains keyword ki
The relevance/score of node n and keyword ki is computed
by

Where: tf(ki,n) - no:of occurences of ki in subtree rooted n,
idf(ki) - ratio of no. of nodes in xml to no:of nodes that
contain keyword ki. ntl(n) - length of n /nmax length,
nmax=node with max terms

s - Constant set to 0.2 Assume users composed a query
containing keyword “db”

Case 2: node n does not contain keyword ki but its
descendant has ki. Second ranking function to compute the
score between n and kj is

Where P - Set of pivotal nodes, α - constant set to 0.8,

- Distance between n and p Assume the user
composed query “db”
Score2 (12, db) = (0.8)*score1 (13, db)

 = 0.8 *1.52 =1.21

3.3.1 Ranking fuzzy search
Given a keyword query Q={k1,k2,…..kl} in terms of fuzzy
search, a minimal-cost tree may not contain the exact input
keywords, but contain predicted words for each keyword.Let
predicted words be {w1,w2…..wl}the best similar prefix of
wi could be considered to be most similar to ki.The function
to quantify the similarity between ki and wi is

where ed – edit distance, ai – prefix, wi – predicted word, γ
– constant

3.4 Progressively Compute Top K Answers

The index structure is used to compute the answers. The leaf
node inverted list contains the content nodes and quasi
contend nodes, scores of the keyword. For computing top k
results heap based method [3] is used which uses the partial
virtual inverted lists which contain the higher score nodes so
to avoid the union of lists which is expensive.

Paper ID: 020131367 161

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

Figure 3: extended tree structure Procedure

Sort the scores in the inverted lists;

1) If the inverted list is long the partial virtual inverted list
2) Construct max heap, such that each node contain <node,

score>
3) The top element of max heap is highest score node and is

deleted, max heap is adjusted
4) Deleted node with score<=T (threshold) are taken into

result set and return the result set if the top –k answers
are retrieved.

For example assume user composed the query “db”. The
inverted list of db contains the nodes 13,16,12,15,9,
2,8,1,5.The scores of these nodes computed by two ranking
functions are 1.52,1. 52,1.21, 1.21,0. 9728,0, 495,0.77,
0,396,0.6225 respectively. These scores have to be sorted
and max heap is constructed and a threshold is fixed be 10
so the top elements< (13, 1.52>, <16, 1.52>, <12, 1.21>,
<15, 1.21> the top e results are retrieved. This technique is
more efficient and effective.

3.5 Xml Materialized View Selection Strategy

The architecture of our materialized view selection strategy
is depicted in Figure 4. We assume that we have a workload
composed of representative queries for which we want to
select a configuration of materialized views in order to
reduce their execution time. The first step is to build, from
the workload, a clustering context. Then we define similarity
and dissimilarity measures that help clustering together
similar queries.

Figure 4: Materialized view selection strategy

Where:
1. Extraction of set of queries resolved by the system
2. Extraction of the representative attributes from the

queries.
3. Application of a clustering algorithm to create clusters of

queries
4. Generation the set of candidate views
5. Selection of the final view configuration
6. Materialization of final view

For each cluster, we build a set of candidate views. The last
step exploits cost models that evaluate the cost of accessing
data using views and the cost of their storage to build a final
materialized view configuration.

3.5.1 Query workload analysis
The workload that consider is a set of selection, join and
aggregation queries. The first step consists in extracting
from the workload the representative attributes for each
query. The representative attributes those are present in
Where (selection predicate attributes) and Group by clauses.
Let store the relationships between the query workload and
the extracted attributes in a “query-attribute” matrix. The
matrix lines are the queries and the columns are the
extracted attributes. A query i q is then seen as a line in the
matrix that is composed of cells corresponding to
representative attributes. The general term ij q of this matrix
is set to one if extracted attribute i a is present in query i q,
and to zero otherwise. This matrix represents our clustering
context.

3.5.2 Building the Candidate View Configuration
In practice, it is hard to search all the syntactically relevant
views (candidate views) because the search space is very
large. To reduce the size of this space, we propose to cluster
the queries. Hence, we group in a same cluster all the
queries that are similar. Similar queries are the one having a
close binary representation in the query-attribute matrix.
Two similar queries can be resolved by using only one
materialized view. It can define similarity and dissimilarity
measures that ensure that queries within a same cluster are
strongly related to each other’s whereas queries from
different clusters are significantly different.

3.5.3 Cost Models
The number of candidate views is generally as high as the
input workload is large. Thus, it is not feasible to materialize
all the proposed views because of storage space constraints.

Paper ID: 020131367 162

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

To circumvent this limitation, we propose to use cost models
allowing keeping only the most pertinent views.

4. Conclusion

This paper presents the keyword search over the xml data
which is user-friendly and there is no need for the user to
study about the xml data .This paradigm gives the relevant
results the user wants. Fuzzy search over xml data is studied
which gives approximate results. Various methods for
querying on xml data LCA based method, ELCA, heap
based method are presented and of all these methods heap
based method gives high quality results. To further improve
the search performance, also addresses an open problem of
answering XML keyword search using materialized views.

References

[1] M.D. Atkinson, J.-R. Sack, N. Santoro, and T.
Strothotte, “Min-max Heaps and Generalized Priority
Queues,” Comm. ACM, vol. 29, no. 10, pp. 996-1000,
1986.

[2] Z. Bao, T.W. Ling, B. Chen, and J. Lu, “Effective XML
Keyword Search with Relevance Oriented Ranking,”
Proc. Int’l Conf. Data Eng. (ICDE), 2009.

[3] H. Bast and I. Weber, “Type Less, Find More: Fast
Auto completion Search with a Succinct Index,” Proc.
Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR), pp.
364-371, 2006.

[4] H. Bast and I. Weber, “The Complete search Engine:
Interactive, Efficient, and towards Ir&db Integration,”
Proc. Biennial Conf. Innovative Data Systems Research
(CIDR), pp. 88-95, 2007.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan, “Keyword Searching and Browsing in
Databases Using Banks,” Proc. Int’l Conf. Data Eng.
(ICDE), pp. 431-440, 2002.

[6] Y. Chen, W. Wang, Z. Liu, and X. Lin, “Keyword
Search on Structured and Semi-Structured Data,” Proc.
ACM

[7] SIGMOD Int’l Conf. Management of Data, pp. 1005-
1010, 2009.

[8] E. Chu, A. Baid, X. Chai, A. Doan, and J.F. Naughton,
“Combining Keyword Search and Forms for Ad Hoc
Querying of Databases,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 349-360, 2009.

[9] B.B. Dalvi, M. Kshirsagar, and S. Sudarshan, “Keyword
Search on External Memory Data Graphs,” Proc. Int’l
Conf. Very Large Data Bases (VLDB), pp. 1189-1204,
2008.

[10] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, and X.
Lin, “Finding Top-k Min-Cost Connected Trees in
Databases,” Proc. Int’l Conf. Data Eng. (ICDE), pp.
836-845, 2007.

[11] R. Fagin, A. Lotem, and M. Naor, “Optimal
Aggregation Algorithms for Middleware,” Proc. ACM
SIGMOD-SIGACTSIGART Symp. Principles of
Database Systems (PODS), 2001.

[12] Baralis E., Paraboschi S., Teniente E., Materialized
View Selection in a Multidimensional Database, VLDB
1997.

[13] Yang J., Karlapalem K., Li Q., Algorithms For
Materialized View Design in Data Warehousing
Environment. VLDB 1997.

Author Profile

Supriya Chaudhari completed B.E. Computer
Science & Engineering from Jawaharlal Darda
Institute of Engineering & Technology, Yavatmal,
Maharashtra, in 2006. She is pursuing ME in
Computer Science & Engineering from Sant Gadge

Baba University Amravati, Maharashtra.

Paper ID: 020131367 163

