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Abstract: We present a comprehensive comparative analysis of classical Fuzzy C-Means (FCM) clustering and kernel –based Fuzzy 
C-Means clustering. While Fuzzy C-Means is a popular soft-clustering method, its effectiveness is largely limited to hyper spherical 
clusters that are linearly separable. If the clusters are not linearly separable, the FCM is not particularly effective. By applying the 
kernel trick, the kernelised fuzzy c-means algorithm attempts to address this problem. The Kernel FCM operates by first non-linearly 
mapping the data to appropriate and sufficiently high-dimensional feature spaces, where according to the Mercer’s theorem the data 
are likely to be linearly separable, and then applying the classical FCM algorithm. We first present the Hard C-Means clustering 
algorithm and a generalization of it called the Fuzzy C-Means. Then we explore the mathematical basis behind the kernel trick, both in 
general and especially in the setting of clustering. Following this we evaluate the performance gains provided by kernelised FCM and 
its classical counterpart, which is the main objective of the present work. It is shown that kernelised FCM does provide significant 
improvements for several popular Machine Learning data sets. However, it is observed that the performance of kerneized FCM depends 
greatly on the selection of the kernel parameters. We do a short comparative study of Kernelized FCM using different kernels.  
 
Keywords: Clustering, Fuzzy c – Means, Kernel Method, Mercer’s Theorem, Kernel Trick. 
 
1. Introduction  
 
1.1 Clustering 
 
Cluster analysis [1] divides data into groups (clusters) in 
order to improve our understanding of the data or to find 
interesting structures in data. Clustering algorithms divides 
up a data set into clusters or classes, where similar data 
objects are assigned to the cluster. 
 

  
(a) Given data set (b) 3 well- separated clusters 

Figure 1.1: 3 linearly separable clusters 
 

In Figure (1.1) it is clear there are three clusters because of 
the spatial proximity between the data points .We can 
separate these clusters by a plane or a line and such data sets 
are called linearly separable. Now let us consider Figure 
(1.2) there is two circular clusters with different radii but in 
this case it is obvious that we cannot separate these two 
clusters by line or plane. The data points are not linearly 
separable in R2. Now the idea is to use a non- linear function 
to map the data from the low dimensional space 2R to some 
higher dimensional space , 2p p>R  in such a way that the data 

are linearly separable .pR  

 
Figure (1.2): Description about the ring data points 

 
1.2 The Kernel Trick 
 
One interesting option available here is the Kernel trick. Let 
the data{ }ix come from q- dimensional Euclidean space .pR   
 
The following forms the basis for the Kernel trick:  
 
(i) There exists some higher dimensional feature space 

,pH ⊂ R usually qp >> and a non-linear map: 
: p pHΦ → ⊂R R such that the transformed data points 

{ ( )}ixΦ .are linearly separable in H. This is guaranteed by 
Cover’s theorem given below: 
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1.3 Cover’s Theorem 
 
A complex pattern classification Problem, cast in a high 
dimensional space nonlinearity, is more likely to be linearly 
separable than in a low- dimensional space, provided that the 
space is not densely populated. 
 
(ii) The algorithm that needs to be kernelized depends only 
on the inner- product of the data points, i.e., only on the 
values of , .i jx x〈 〉  For instance, the algorithms that make use 
of the Covariance matrices of the data where each entry is 
precisely the above inner product. The kernel trick now is in 
finding a scalar map : p qK × →R R R  such that 
 

( , ) ( ) , ( ) ,i j i jk x x x x= 〈Φ Φ 〉  
 
i.e. the inner product of the transformed data points is the 
image of the original data points under K. 
 
2. Fuzzy c- Means 
 
In HCM, the membership degrees kiu  are either 0 or 1. What 
this means is that once a data point is assigned to a cluster 
center other cluster centers do not see it at all. This often 
leads to a much skewed partition. Towards avoiding this 
pitfall, the Fuzzy c- Means algorithm [2] proceeds to fuzzify 
the constraint .bµ That is, we allow fuzzy membership by 
relaxing the condition (0,1)kiµ ∈ into the fuzzy one; 

[0,1].kiµ ∈ This means that we replace bµ  .by next 
constraint:  

1
( ) : 1,1 ;

n

f k i k j
j

U u u k Nµ
=

= = = ≤ ≤∑  

 and [ 0 , 1 ] , 1 , 1 .k iu k N i c∈ ≤ ≤ ≤ ≤             (1) 
 
2.1 Algorithm FCM 
 
In the following we give the basic procedure of Fuzzy c- 
Means. 
FCM1: [Generate initial value:] Generate c initial value for 
cluster centers 1 2 3( , , .......... , ) .nV v v v v=  
FCM2. [Find optimal U:] Calculate  

 
.arg m in (U , )

fU
fcmU J V

µ∈
=

                         (2) 

 
FCM3. [Find optimal V:] Calculate 

 
.arg min ( ,V)

V

fcmV J U=
                       (3) 

FCM4. [Test convergence:] If U or V is convergent, stop; 
else go to FCM2. 
End FCM. 
 
3.Kernels and the Kernel Trick 

Kernelization [2] is an efficient way to transform a data- set 
(usually low dimensional) to a higher dimensional data set. 
The Kernel Trick, as it is usually referred to, hinges on the 

Mercer’s theorem which guarantees that there is mapping 
( ) : ,px HΦ →R such that  

 ( , ) ( ), ( )k x y x y= 〈Φ Φ 〉                      (4) 
 Where H is Hilbert space.  
 
3.1 Positive Definite Kernel 
 
Let X is a non empty set. A function k on X × X which for all 

Ν∈m and all 1 2, ,..., mx x x X∈ gives rise to a positive 
definite Gram matrix is called a positive definite kernel. A 
function k which gives rise to an operator 

kT [4], [5], [7], via  

( )( ) ( , ) ( )k
x

T f x k x y f y dy= ∫                    (5) 

 is called the kernel of kT . 

Let , .nx y ∈ R In the following, we list some examples of 
commonly employed kernels: 
• The Polynomial Kernel : 

( , ) ( , )dk x y x y c= 〈 〉 +  Where ,c d ∈R  and d refers to 
the dimension of H. 
• The Gaussian Kernel : 

 












 −−
= 2

2

2
exp),(

σ
λ yx

yxk                     (6) 

• Tan- Hyperbolic Kernel : 













 −−
−= 2

2

tanh1),(
σ

yx
yxk                        (7) 

 
3.2 Mercer Theorem 
 
Theorem: Suppose 2( )k L X∞∈  is a symmetric real-valued 
function such that the integral operator (1) 

2 2: ( ) ( )KT L X L X→  

( )( ) : ( , ) ( ) ( )k
x

T f x k x y f y d yµ= ∫                      (8)  

is positive definite; that is , for all 2 ( ),f L X∈ we have 

( , ) ( ) ( ) ( ) ( ) 0.
x

k x y f x f y d x d yµ µ ≥∫                  (9) 

Let 2( )j L xψ ∈  be the normalized orthogonal Eigen functions 

of kT  associated with the Eigen-values 0,jλ > sorted in 
non-increasing order. Then  
• 1,( )j lλ ∈  

• 
1

( , ) ( ) ( )HN
j j jj

k x y x yλ ϕ ϕ
=

=∑  holds for almost all 

( , ).x y  
Mercer’s [6], [7] result plays a central role in the kernel trick 
for the following reason. If k is a kernel satisfying the 
conditions of Mercer Theorem, one can constraint a map 
Φ into a space where k acts as a dot product, 

 ( , ) ( ), ( ) ,k x y x y= 〈Φ Φ 〉                           (10) 
For almost all , .x y X∈ Moreover given any 0,∈> there 
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exist a map nΦ  into an n- dimensional dot product space 
such that  

 ( , ) ( ), ( )n nk x y x y− 〈Φ Φ 〉 <∈                 (11) 

for almost all , .x y X∈ Both Mercer kernels and positive 
definite kernels can thus be represented as dot products in 
Hilbert spaces. 
 
3.3 Kernelized fuzzy c- Means Algorithm  
 
The method of fuzzy c- means uses the alternate optimization 
of  

 
2

1 1
)(),( ik

c

i

N

k

m
kifcm vxuWUJ −= ∑∑

= =

          (12) 

If we intend to analyze data using a kernel function, we 
should transform data into the high- dimensional feature 
space, in other words transformed objects 

1 2( ), ( ),...... ( )Nx x xΦ Φ Φ should be divided into clusters. 
 
The following objective functions [2] should therefore be 
considered 

2

1 1
)()(),(

Hik

c

i

N

k

m
kikfcm WxuWUJ −Φ= ∑∑

= =

,   (13) 

Where 1 2(W , W ,....., )cW W= and iW  is the cluster centre 

in H; 
H

is the form of H. 
 
The alternate optimization algorithm FCM should to apply to 
(7). The optimal U is 

1

1

1
1

2

2

)(

)(

−

=

−
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Hjk
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       =
11

1

1

mc
k i

j k j

D
D

−

−

=

 
     
   

∑                        (14) 

For ( , ).kfcmJ U W Notice that we put  
2

)(
H

ik Wx −Φ . The optimal W is given by 

 k = 1

k = 1

( u ) ( x )

( u )

m
k i k

i
m

k i

W

Ν

Ν

Φ
=
∑

∑
                   (15) 

For ( , ).kfcmJ U W

2
1 1 1i

2 1D K (u ) ( u ) K .
( ) ( )

N N N
m m

ki kk ji jk ji bi jb
j j bi

K u
S m S m= = =

= − +∑ ∑∑     (16) 

Where 
k=1

S ( ) (u )
N

m
kii m =∑  and  

 ( , ) ( ), ( ) .kb k b k bK k x x x x= = 〈Φ Φ 〉   
 
Notice also that when the entropy method is used, the same 
equation (10) is used with m = 1.  
 

Since we do not use the cluster centers in the kernalized 
method, the algorithm should be rewritten using solely U 
and kiD . There is also a problem of how to determine the 

initial value of kiD .For this purpose we select c objects 

1 2, , ..., cy y y randomly from 1 2( , , . .. , )Nx x x and 

let (1 ).i iW y i c= ≤ ≤ Then 
2

H
( ) ( ) ( , ) ( , ) 2 ( ,y ).ki k i k k i i k iD x y k x x k y y k x= Φ −Φ = + −  (17) 

 
3.3.1 Algorithm of Kernelized FCM  
KFCM1. Select randomly 1 2 1 2, , ..., ( , ,..., ).c Ny y y x x x∈   

Calculate kiD by (17). 
KFCM2. Calculate kiu by (14). 

KFCM3. If the solution ( )kiU u= is convergent, stop. Else  

updates kiD using (16). Go to KFCM2. 
End KFCM. 
 
4.  Results and Discussion 
 
Some final concluding remarks detailing some further 
observations and possible future extensions are given. 
 
4.1 The Data Sets 
 
We consider the following 4 data sets some of which are 
linearly separable and the rest are not. 

 
(a) Purely Linear - 1 or 2 Clusters (b) Purely Linear - 2,3 

or 4 Clusters 

(c) Linear and 1 Non-linear clusters (d) Linear and 2 Non- 
linear clusters 

Figure 4.1: Data sets that are both Purely Linear and Linear-
cum-Non-linear. 

  
(a)Annular Ring (b) Annular ring and Circle 
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(c) Two Distinct Annular Rings (d) Three Annular Circles 

Figure 4.2: Data sets that are purely Non-linear. 
 
4.2 FCM on the Data Sets 
 
We firstly apply the FCM algorithm on each of these. Figs.  
4.3 and  4.4 contain the clusters that are usually found from 
repeated runs of the FCM on these data sets. It is clear that 
when the data are linearly separable and the numbers of 
clusters are a priori specified correctly then FCM correctly 
identifies the clusters. In fact, this is the case in every run of 
the FCM on these data sets, as can be seen from Figs.  4.3(a) 
and (b). However, as can be seen from Fig. 4.3(d) and Figs. 
4.4(a) and (d), when the data are not linearly separable, FCM 
finds an artificial boundary based on the local density of the 
data distribution. FCM algorithm, as is well-known, clusters 
data in such a way that the hyper-volume of each of the 
clusters is roughly equal. It should be noted that in Fig.  
4.3(c) and Figs. 4.4(b) and (c) though FCM appears to 
segregate the data well it is more due to the way the annular 
data are positioned, which makes it easy to linearly separate 
them. 
 

  
(a) FCM on the data set (b) FCM on the data set in Fig. 

4.1(a) in Fig. 4.1(b) 

 
(c) FCM on the data set (d) FCM on the data set in Fig. 

4.1(c) in Fig. 4.1(d) 
 

Figure 4.3: FCM on the data sets that contain both linear and 
Non-linear subsets. 

 
4.3 Gaussian Kernel-FCM on the data sets 
 
Figs. 4.5–4.7 contains the clusters that are usually found from 
repeated runs of the Gaussian Kernel-based FCM on these 
data sets. Note that the Gaussian kernel is given by the 
formula: 













 −−
= 2

2

2
exp),(

σ
λ yx

yxk                      (18) 

 
Unlike in the case of pure FCM, we have two degrees of 

freedom here in the form of the parameters λ, σ. It is found 
that when the data are only linearly separable, even if the 
numbers of clusters are a priori specified correctly for no 
value of the parameters λ, σ do we get a clear segregation. 
This can be seen from Figs. 4.5(a) and (b). Now let us 
consider the data sets in  Figs.4.1(c) and (d), which contain 
linear and non- linear data sets. As can be seen from Figs. 
4.6(a)–(d), the resulting clusters can vary significantly. The 
output obtained with λ = 2, σ = 0.5 are given 

 

  
(a) FCM on the data set in Fig. 4.2(a) (b) FCM on the data 

set in Fig. 4.2(b) 

  
(c) FCM on the data set in Fig. 4.2(c) (d) FCM on the data 

set in Fig 4.2(d). 
Figure 4.4: FCM on the non-linear data sets. 

(a) GKFCM on the data set (b) GKFCM on the data set 
in Fig. 4.1(a) in Fig. 4.1(b) 

Figure 4.5: Gaussian Kernel-based FCM on the linear data 
sets. 

 
In Figs. 4.6(a) and (c), where we see a less than ideal 
segregation. However, when the parameters were set as 
follows λ = 0.5, σ = 0.5 with the number of clusters varying 
between c = 2, 3, 4. The best reasonable segregation we 
found on the data set in  Fig.4.1(c) is given in Fig. 4.6(b) 
where we see that it has correctly clustered one of the circular 
data sets. Our results on the data set in  Fig.4.1(d) with the 
above parameters did not show much improvement, see Fig.  
4.6(d). 
 

  
(a) GKFCM on the data set in (b) GKFCM on the data 

Fig. 4.1(c)with λ = 2, σ = 0.5 set in Fig. 4.1(c) with 
λ = 0.5, σ = 0.5 
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(c) GKFCM on the data set in (d) GKFCM on the data 

Fig. 4.1(d) with λ = 2, σ = 0.5 set in Fig. 4.1(d)with λ = 0.5 , 
σ = 0.5 

 
Figure 4.6: Gaussian Kernel-based FCM on the data sets that 

contain both Linear and Non-linear subsets 
 
Finally, let us consider the data sets that are non-linear 
in 2R . It can be seen that the annular ring data set which 
is usually touted as a shining example for the separation 
prowess of the Gaussian Kernel based FCM can also fail 
when the wrong parameters are chosen. Fig. 4.7(a) is 
with the correct choice of parameters, viz., λ = 0.5, σ = 
0.5, while Fig. 4.7(b) shows the less than ideal separation 
produced with λ = 2, σ = 0.5. This is further emphasized 
by the results in Figs. 4.8(a) and (b) when applied on the 
data set in Fig. 4.2(d), where for no values of λ, σ can we 
segregate all the three annular rings. The Gaussian kernel-
based FCM when applied to the data set in Fig. 4.2(b), 
with varying values of λ, σ and the number of clusters c 
= 3, always found the smaller of the circular data sets, 
but did not find the annular rings separately, see Figs. 
4.7(c) and (d). It is interesting to note that when applied 
with c = 2 similar outputs were obtained. 
 

  
(a) GKFCM on the data (b) GKFCM on the data 

set in Fig. 4.2(a) set in Fig. 4.2(a) 
with λ = 0.5, σ = 0.5 with λ = 2, σ = 0.5 

  
(c) GKFCM on the data (d) GKFCM on the data 

set in Fig. 4.2(b) set in Fig. 4.2(b) 
with λ = 0.5, σ = 0.5 with λ = 2, σ = 0.5 

 
 
 
 
 
 

  
(e) GKFCM on the data (f) GKFCM on the data 

set in Fig. 4.2(c) with set in Fig. 4.2(c) with 
λ = 0.5, σ = 0.5, c = 2 λ = 0.5, σ = 0.5,c=4 

 
Figure 4.7: Gaussian Kernel-based FCM on the non-linear 

data seta 
 
Similarly, when applied to the data set in Fig. 4.2(c) with 
varying values of λ, σ and the number of clusters c the best 
results obtained were either of the following: 
 
• Either, it found one of the inner annular rings data as one 

cluster and the rest of the data as a separate cluster, see Fig. 
4.7(c), or 

• It found both the annular rings to be separate clusters but 
did not identify the inner annular rings separately, see Fig. 
4.7(d). 

  
(a) GKFCM on the data (b) GKFCM on the data  

set in Fig. 4.2(d) set in Fig. 4.2(d) with λ = 0.5, σ = 0.5 with 
λ = 2, σ = 0.5 

Figure 4.8: Gaussian Kernel-based FCM on the 3 Annular 
circles 

 
4.4 Tan-Hyperbolic Kernel-FCM on the data sets 
 
Figs. 4.9–4.11 contain the clusters that are usually found 
from repeated runs of the Tan-Hyperbolic Kernel-based 
FCM on these data sets. Note that the Tan- Hyperbolic 
kernel is given by the formula: 

 
2

2( , ) 1 tanh
x y

k x y
σ

 −
= −  

 
 

 (19) 

Once again, we have a degree of freedom here in the form of 
the parameter σ. The results we obtained were very much 
along the lines of those obtained with the Gaussian kernel. It 
is found that when the data are linear, even if the number of 
clusters is a priori specified correctly for no value of the 
parameters σ do we get a clear segregation. This can be seen 
from Figs. 4.9(a) and (b). 
 
Now let us consider the data sets in Figs.4.1(c) and (d), 
which contain both linear and non-linear data sets. As can be 
seen from Figs. 4.10(a) and (b), the resulting clusters can 
vary significantly. The output obtained with σ = 2 are given 
in Figs. 4.10(a) and (b), where we see a less than ideal 
segregation. While for the data set in Fig.4.1 (d) for no 
value of the parameters σ, c do we get a clear segregation, 
with σ=2 and the number of clusters varying between c = 
2, 3, 4 the best reasonable segregation we found on the data 
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set in Fig.4.1(c) is given in Fig. 4.10(a) where we see that it 
has correctly clustered one of the circular data sets. 

  
(a) THKFCM on the data set (b) THKFCM on the data set in 

Fig. 4.1(a) in Fig. 4.1(b) 
 

Figure 4.9: Tan-Hyperbolic Kernel-based FCM on the linear 
data sets 

  
(a) THKFCM on the data set (b) THKFCM on the data set in 

Fig. 4.1(c) with σ = 2 in Fig. 4.1(d) with σ = 2 
 

Figure 4.10: Tan-Hyperbolic Kernel-based FCM on the data 
sets that contain both Linear and Non-linear subsets. 

 
The Tan-Hyperbolic kernel FCM acts on the non-linear data 
sets in 2�

 much along the lines of the Gaussian Kernel 
FCM. It can be seen that with the right parameter chosen, in 
this case σ = 2 we obtain the correct result as given Fig. 
4.11(a), while with other choices, say for instance with σ = 
0.5 the clustering was very skewed as given in Fig. 4.11(e). 
 
When applied to the data set in Fig. 4.2(b), with varying 
values of σ and the number of clusters c = 3, it usually found 
the smaller of the circular data sets, but did not find the 
annular rings separately, see Fig. 4.11(b). Once again, even 
when applied with c = 2 similar outputs were obtained. 
 
When applied to the data set in Fig. 4.2(c) and (d) with 
varying values of σ and the number of clusters c, the best 
results obtained mimicked those that were obtained with the 
Gaussian Kernel FCM (see Section 4.3), the results of which 
are: 

  
(a) THKFCM on the data set (b) THKFCM on the data set in 

Fig. 4.2(a) with σ = 2 in Fig. 4.2(b) with σ = 2, c = 2 

  
(c) THKFCM on the data set (d) THKFCM on the data set in 

Fig. 4.2(c) with σ = 2, c = 2 in Fig. 4.2(c) with σ = 2, c = 4 

  
(e) THKFCM on the data set (f) THKFCM on the data set in 

Fig. 4.2(a) with σ = 0.5 in Fig. 4.2(d) with σ = 2 
 

Figure 4.11: Tan-Hyperbolic Kernel-based FCM on the non-
linear data sets given in Figs. 4.11(c), (d) and (e). 

 
5.  Some Observations and Analysis based on 

our Results 
 
5.1 Classical FCM 
 
• The classical version of the FCM still remains the best 

suitable among the FCM stable when the data sets are 
linear, see Figs. 4.3(a) and (b). 

• Classical FCM also has the advantage that except the 
fuzzifier m there are no parameters to choose. The 
conventional choice of m = 2 seems to work well in all our 
cases. 

• The classical FCM performs poorly if the data are not 
linearly separable, see Figs. 4.3(c) and (d) and 4.4. 

 
5.2 Kernel-based FCM 
 
• The kernel-based FCMs tend to perform better than the 

FCM when the data sets are non-linear, see Figs. 4.7, 4.8 
and 4.11. 

• They offer many degrees of freedom in terms of their 
parameters. 

• Setting these parameters correctly is a tough task and can 
affect the final result adversely as is shown in Figs. 4.7 and 
4.11. 

• In some cases, it may not be possible to find the right 
parameter even when the non-linearities in the data are 
known a priori. 

• Their performance is poor when the underlying data sets 
are linear, see Figs. 4.9(a) and 4.9(b). 

• Often they are not able to identify clusters of similar type, 
shape or size as is obvious from Figs. 4.6 and 4.10. 

 
6. Conclusion 
 
Based on our results, it appears that while the kernel-based 
modifications of FCM do possess many properties, their utility 
seems to be restricted to some specific type or native clusters 
and even here not all of those native clusters are identified and 
segregated well. By native clusters, we mean, for example 
spherical clusters of a particular radii when the Gaussian 
kernel with fixed λ, σ values are used. This is quite an 
interesting observation since in the kernelized FCM 
algorithm the kernel function essentially searches for the 
native clusters locally and should be able to identify all of 
these. This also explains the results obtained in Figs. 4.8 and 
4.11. Further, there is no clear guidance towards the selection 
of the kernel function and a reference, even heuristic, with 
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respect to which the optimization of the kernel parameters 
can be done. 
 
In the case when the data contain both linear and non-linear 
subsets none of the versions of the FCM is able to identify all 
of them correctly. It is well-known that the fuzzifier m plays 
a major role in both the amount of overlap between clusters 
and also in removing unwanted local minima. In this case 
the effect of m was not considered and this merits a deeper 
exploration. In fact, it appears that even the kernelized 
versions of FCM tend to ensure that more or less all the 
clusters have the same hyper-volume, as in the case of FCM 
but perhaps in the feature space to where they are mapped. 
This also needs further exploration. 
 
From the results obtained and for the stated reasons, it 
appears that the full potential of the kernelized versions of 
FCM are yet to be harvested and a far deeper exploration is 
necessary to lay thread bare clearly the context in which they 
are applicable with reasonable results when not much can be 
assumed on the data, especially when the data contain both 
linear and non-linear subsets. 
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