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Abstract: In this paper, efficient bus architecture to support most advanced bus functionalities defined in OCP, including burst 
transactions, lock transactions, pipelined transactions, and out-of-order transactions with respect to its suitable application in the real 
time product. The Open Core Protocol (OCP) was designed and the hardware modeling for that architecture was done using VHDL. 
This design is Simulated and Synthesized. As more IP cores are integrated into an SOC design, the communication flow between IP
cores has increased drastically and the efficiency of the on-chip bus has become a dominant factor for the performance of a system. The 
on-chip bus design can be divided into two parts, namely the interface and the internal architecture of the bus. In this work the well-
defined interface standard Open Core Protocol (OCP) is adopted, and the internal bus architecture is designed. The Open Core Protocol
(OCP) is a core centric protocol which defines a high-performance, bus-independent interface between IP cores that reduces design
time, design risk, and manufacturing costs for SOC designs. Main property of OCP is that it can be configured with respect to the 
application required. The OCP is chosen because of its advanced supporting features such as configurable sideband control signaling
and test harness signals, when compared to other core protocols. The OCP defines a point-to-point interface between two 
communicating entities such as IP cores and bus interface modules. One entity acts as the master of the OCP instance, and the other as 
the slave. Only the master can present commands and is the controlling entity. The slave responds to commands presented to it, either by 
accepting data from the master, or presenting data to the master. For two entities to communicate there need to be two instances of the 
OCP connecting them such as one where the first entity is a master and one where the first entity is a slave. 
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1. Introduction 

An SOC chip usually contains a large number of IP cores that 
communicate with each other through on-chip buses. As the 
VLSI process technology continuously advances, the 
frequency and the amount of the data communication 
between IP cores increase substantially. As a result, the 
ability of on chip buses to deal with the large amount of data 
traffic becomes a dominant factor for the overall 
performance. The design of on-chip buses can be divided into 
two parts: bus interface and bus architecture. The bus 
interface involves a set of interface signals and their 
corresponding timing relationship, while the bus architecture 
refers to the internal components of buses and the 
interconnections among the IP cores. The widely accepted 
on-chip bus, AMBA AHB [2] defines a set of bus interface to 
facilitate basic (single) and burst read/write transactions. 
AHB [3] & [4] also defines the internal bus architecture, 
which is mainly a shared bus composed of multiplexors. The 
multiplexer-based bus architecture works well for a design 
with a small number of IP cores. When the number of 
integrated IP cores increases, the communication between IP 
cores also increase and it becomes quite frequent that two or 
more master IPs would request data from different slaves at 
the same time. The shared bus architecture often cannot 
provide efficient communication since only one bus 
transaction can be supported at a time. To solve this problem, 
two bus protocols have been proposed recently. One is the 
Advanced eXtensible Interface protocol (AXI) [1] proposed 
by the ARM company. AXI defines five independent 
channels (write address, write data, write response, read 
address, and read data channels). Each channel involves a set 
of signals. AXI does not restrict the internal bus architecture 
and leaves it to designers. Thus designers are allowed to 
integrate two IP cores with AXI by either connecting the 

wires directly or invoking an in-house bus between them. The 
other bus interface protocol is proposed by a non-profitable 
organization, the Open Core Protocol – International 
Partnership (OCP-IP) [3] .OCP is an interface (or socket) 
aiming to standardize and thus simplify the system 
integration problems. It facilitates system integration by 
defining a set of concrete interface (I/O signals and the 
handshaking protocol) which is independent of the bus 
architecture. Based on this interface IP core designers can 
concentrate on designing the internal functionality of IP 
cores, bus designers can emphasize on the internal bus 
architecture, and system integrators can focus on the system 
issues such as the requirement of the bandwidth and the 
whole system architecture. In this way, system integration 
becomes much more efficient. Most of the bus functionalities 
defined in AXI [2] and OCP are quite similar. The most 
conspicuous difference between them is that AXI divides the 
address channel into independent write address channel and 
read address channel such that read and write transactions can 
be processed simultaneously. However, the additional area of 
the separated address channels is the penalty. 

2. Over View of OCP Functionalities 

We first describe the various bus functionalities including; 

 Burst 
 Lock 
 Pipelined 
 Out-Of-Order Transactions 
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2.1 Burst Transactions 

The burst transactions allow the grouping of multiple 
transactions that have a certain address relationship, and can 
be classified into multi-request burst and single-request burst 
according to how many times the addresses are issued. 
FIGURE 1 shows the two types of burst read transactions. 
The multi-request burst as defined in AHB is illustrated in 
FIGURE 1(a) where the address information must be issued 
for each command of a burst transaction (e.g., A11, A12, A13 
and A14). This may cause some unnecessary overhead. In the 
more advanced bus architecture, the single-request burst 
transaction is supported. As shown in FIGURE 1(b), which is 
the burst type defined in AXI, the address information is 
issued only once for each burst transaction. In our proposed 
bus design we support both burst transactions such that IP 
cores with various burst types can use the proposed on-chip 
bus without changing their original burst behavior. 

Figure 1: Burst transactions 

2.2 Lock Transactions 

Lock is a protection mechanism for masters that have low bus 
priorities. Without this mechanism the read/write transactions 
of masters with lower priority would be interrupted whenever 
a higher-priority master issues a request. Lock transactions 
prevent an arbiter from performing arbitration and assure that 
the low priority masters can complete its granted transaction 
without being interrupted.  

2.3 Pipelined transactions (outstanding transactions) 

Figure 2(a) and 2(b) show the difference between non-
pipelined and pipelined (also called outstanding in AXI) read 
transactions. In FIGURE 2(a), for a non-pipelined transaction 
a read data must be returned after its corresponding address is 
issued plus a period of latency. For example, D21 is sent right 
after A21 is issued plus t. For a pipelined transaction as 
shown in FIGURE 2(b), this hard link is not required. Thus 
A21 can be issued right after A11 is issued without waiting 
for the return of data requested by A11 (i.e., D11-D14). 

Figure 2: Pipelined transactions 

2.4 Out-of-order transactions 

The out-of-order transactions allow the return order of 
responses to be different from the order of their requests. 

These transactions can significantly improve the 
communication efficiency of an SOC system containing IP 
cores with various access latencies as illustrated in FIGURE 
3. In FIGURE 3(a) which does not allow out-of-order 
transactions, the corresponding responses of A21 and A31 
must be returned after the response of A11. With the support 
of out-of-order transactions as shown in FIGURE 3(b), the 
response with shorter access latency (D21, D22 and D31) can 
be returned before those with longer latency (D11-D14) and 
thus the transactions can be completed in much less cycles. 

Figure 3: out-of-order transctions 

3. Proposed System Block Diagram 

The block diagram which explains the basic operation and 
characteristics of OCP is shown in Figure 5.The OCP defines 
a point-to-point interface between two communicating 
entities such as IP cores and bus interface modules. One 
entity acts as the master of the OCP instance, and the other as 
the slave. Only the master can present commands and is the 
controlling entity. The slave responds to commands presented 
to it, either by accepting data from the master, or presenting 
data to the master. For two entities to communicate there 
need to be two instances of the OCP connecting them such as 
one where the first entity is a master, and one where the first 
entity is a slave. 

Figure 4: Basic block diagram of OCP instance 

Figure 4 shows a simple system containing a wrapped bus 
and three IP core entities such as one that is a system target, 
one that is a system initiator, and an entity that is both. The 
characteristics of the IP core determine whether the core 
needs master, slave, or both sides of the OCP [5] and the 
wrapper interface modules must act as the complementary 
side of the OCP for each connected entity. A transfer across 
this system occurs as follows.  

A system initiator (as the OCP master) presents command, 
control, and possibly data to its connected slave (a bus 
wrapper interface module). The interface module plays the 
request across the on-chip bus system. The OCP does not 
specify the embedded bus functionality. Instead, the interface 
designer converts the OCP request into an embedded bus 
transfer. The receiving bus wrapper interface module (as the 
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OCP master) converts the embedded bus operation into a 
legal OCP command. The system target (OCP slave) receives 
the command and takes the requested action. 

Figure 5: Architecture of Proposed OCP 

4. Hardware Design of the On- Chip Bus 

A crossbar architecture is employed such that more than one 
master can communicate with more than one slave 
simultaneously. If not all masters require the accessing paths 
to all slaves, partial crossbar architecture is also allowed.  

4.1 Arbiter 
In traditional shared bus architecture, resource contention 
happens whenever more than one master requests the bus at 
the same time. For a crossbar or partial crossbar architecture, 
resource contention occurs when more than one master is to 
access the same slave simultaneously. In the proposed design 
each slave IP is associated with an arbiter that determines 
which master can access the slave. 

4.2 Decoder 

Since more than one slave exists in the system, the decoder 
decodes the address and decides which slave return response 
to the target master. In addition, the proposed decoder also 
checks whether the transaction address is illegal or 
nonexistent and responses with an error message if necessary. 

4.3 FSM-M & FSM-S 

Depending on whether a transaction is a read or a write 
operation, the request and response processes are different. 
For a write transaction, the data to be written is sent out 
together with the address of the target slave, and the 
transaction is complete when the target slave accepts the data 
and acknowledges the reception of the data. For a read 
operation, the address of the target slave is first sent out and 
the target slave will issue an accept signal when it receives 
the message. The slave then generates the required data and 

sends it to the bus where the data will be properly directed to 
the master requesting the data. The read transaction finally 
completes when the master accepts the response and issues an 
acknowledge signal. In the proposed bus architecture, we 
employ two types of finite state machines, namely FSM-M 
and FSM-S to control the flow of each transaction. FSM-M 
acts as a master and generates the OCP signals of a master, 
while FSM-S acts as a slave and generates those of a slave. 
These finite state machines are designed in a way that burst, 
pipelined, and out-or-order read/write transactions can all be 
properly controlled. 

A. Experiment and analysis 
The module open core protocol (ocp) has been designed using 
verilog,vhdl code. The functionality of the design was 
verified using modelsim and synthesized using Xilinx ISE 
design suite 12.1 version. 

B. Simulation and Synthesis Results 

Figure 6: Simulation result of 4-bust operation 

Figure 7: Synthesis of OCP 

A multimedia SOC design [8] is used that contains an ARM9 
processor, a Parallel Architecture Core (PAC) DSP processor, 
a RAM, a ROM and some peripheral devices. Originally the 
on-chip bus is a multi-layer bus consisting of two AHB-lite 
busses modeled with a commercial bus library (CoWare ) The 
ARM9 processor is connected to one AHB-lite bus, and the 
PAC DSP processor is connected to the other. In the 
experiment, we replace the AHB-lite bus connecting the PAC 
DSP processor with the proposed on-chip bus and verify the 
whole SOC design with an H.264 decoding procedure. 

Experimental results show that the proposed on-chip bus 
deals with all the communications in the SOC well. The 
simulation times of decoding one frame are about 48.6 and 
44.3 seconds before and after the replacement, respectively. It 
should be pointed out that even though both the proposed bus 
and the one using CoWare bus library are cycle-accurate; our 
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proposed bus is further a pin-accurate one but the one from 
CoWare is not. To focus on the efficiency evaluation of the 
crossbar bus architecture, we design an SOC system which 
contains four masters (IP1 and IP2, IP3, IP4) and Four slaves 
(IP5, IP6 and IP7, IP8). In this experiment we compare the 
communication efficiency of the SOC systems with the 
shared bus architecture and the crossbar bus architecture. The 
transactions used in the experiment are described as follows. 

1) Master IP2 first requests a series of burst WR transactions 
to slave IP6and a WR transaction to slave IP7. 

2) Master IP1 then requests a series of burst RD transactions 
to slave IP6. 

3) Master IP1 then requests a series of burst WR transactions 
to slave IP8, and master IP2 requests a series of burst WR 

4) Transactions to slave IP6. 
5) Master IP2 requests a series of burst RD transactions to 

slave IP8. 

The procedure from step2 to step4 is iterated for 100 
iterations. 

The execution of these transactions on the crossbar 
architecture can be illustrated where parallel communication 
between different masters and slaves happens in time 
intervals .The behavior on the share bus architecture is all in 
series without any parallel communication. Experimental 
results show that the proposed bus with crossbar 
interconnection reduces about 23.35% communication cycles 
as comparing to the tradition shared bus architecture such as 
AHB. 

In the last experiment, we evaluate the efficiency of out-of 
order transactions using the proposed scheduler. We assume 
that the access latency of the slave IP5 and IP6 in are 1 cycle 
and 3 cycles, respectively. The slave IP8 has the access 
latency of 5 cycles when it is accessed by master IP1 and two 
cycles when it is accessed by master IP2. In the simulation, 
IP1 first requests a series of out-of-order WR transactions, 
IP2 then requests a series of out-of-order RD transactions. 
After that, IP2 requests a series of out-of-order WR 
transactions, and IP1 finally requests a series of out-of order 
RD transactions. The simulation results show that when each 
series of these requests contain 6000 transactions, the 
proposed scheduler reduces 67.16% communication cycles as 
comparing to a bus that supports only in-order transactions. 

4.4 Application 

Since it is an IP block, it can be used in any kind of SOC 
Application. The application can be listed as follows. 

 SRAM 
 Processor

5. Conclusion

Cores with OCP interfaces and OCP interconnect systems 
enable true modular, plug-and-play integration; allowing the 
system integrators to choose cores optimally and the best 
application interconnect system. This allows the designer of 
the cores and the system to work in parallel and shorten 
design times. In addition, not having system logic in the cores 
allows the cores to be reused with no additional time for the 

core to be re-created. Depending upon the real time 
application these intellectual properties can be used. 

References 
[1] Advanced Microcontroller Bus Architecture (AMBA) 

Specification Rev 2.0 & 3.0, http://www.arm.com. 
[2] Open Core Protocol (OCP) Specification, 

http://www.ocpip.org/home. 
[3] Y.-T. Kim, T. Kim, Y. Kim, C. Shin, E.-Y. Chung, K.-

M. Choi, J.-T. Kong, S.-K. Eo, “Fast and Accurate 
Transaction

[4] Level Modeling of an Extended AMBA2.0 Bus 
Architecture,” Design, Automation, and Test in Europe,
pages 138-139, 2005. 

[5] G. Schirner and R. Domer, “Quantitative Analysis of 
Transaction Level Models for the AMBA Bus,” Design,

[6] Automation, and Test in Europe, 6 pages, 2006. 
[7] C.-K. Lo and R.-S. Tsay, “Automatic Generation of 

Cycle Accurate and Cycle Count Accurate Transaction 
Level Bus 

[8] Models from a Formal Model,” Asia and South Pacific 
Design Automation Conference, pages 558-563, 2009. 

[9] N.Y.-C. Chang, Y.-Z. Liao and T.-S. Chang, “Analysis 
of Shared-link AXI,” IET Computers & Digital 
Techniques, Volume 3, Issue 4, pages 373-383, 2009. 

[10] IBM Corporation, “Prioritization of Out-of-Order Data 
Transfers on Shared Data Bus,” US Patent No. 
7,392,353, 2008. 

[11] CoWare website, http://www.coware.com

Paper ID: 020131319 355




