
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

Design and Analysis of Open Core Protocol for the
on Chip Bus Using VHDL
Naseer Rasool .T1 , Shaik Jaffar2, Shaik Saheb Basha3

1M.Tech Student, Department of ECE, Madina Engineering College, Kamalapuram, Andhra Pradesh, India
2Associate Professor, Department of ECE, Madina Engineering College, Kamalapuram, Andhra Pradesh, India

3Principal , Department of ECE, Madina Engineering College, Kamalapuram, Andhra Pradesh, India

Abstract: In this paper, efficient bus architecture to support most advanced bus functionalities defined in OCP, including burst
transactions, lock transactions, pipelined transactions, and out-of-order transactions with respect to its suitable application in the real
time product. The Open Core Protocol (OCP) was designed and the hardware modeling for that architecture was done using VHDL.
This design is Simulated and Synthesized. As more IP cores are integrated into an SOC design, the communication flow between IP
cores has increased drastically and the efficiency of the on-chip bus has become a dominant factor for the performance of a system. The
on-chip bus design can be divided into two parts, namely the interface and the internal architecture of the bus. In this work the well-
defined interface standard Open Core Protocol (OCP) is adopted, and the internal bus architecture is designed. The Open Core Protocol
(OCP) is a core centric protocol which defines a high-performance, bus-independent interface between IP cores that reduces design
time, design risk, and manufacturing costs for SOC designs. Main property of OCP is that it can be configured with respect to the
application required. The OCP is chosen because of its advanced supporting features such as configurable sideband control signaling
and test harness signals, when compared to other core protocols. The OCP defines a point-to-point interface between two
communicating entities such as IP cores and bus interface modules. One entity acts as the master of the OCP instance, and the other as
the slave. Only the master can present commands and is the controlling entity. The slave responds to commands presented to it, either by
accepting data from the master, or presenting data to the master. For two entities to communicate there need to be two instances of the
OCP connecting them such as one where the first entity is a master and one where the first entity is a slave.

Keywords: OCP, IP, SOC, AXI, AHB

1. Introduction

An SOC chip usually contains a large number of IP cores that
communicate with each other through on-chip buses. As the
VLSI process technology continuously advances, the
frequency and the amount of the data communication
between IP cores increase substantially. As a result, the
ability of on chip buses to deal with the large amount of data
traffic becomes a dominant factor for the overall
performance. The design of on-chip buses can be divided into
two parts: bus interface and bus architecture. The bus
interface involves a set of interface signals and their
corresponding timing relationship, while the bus architecture
refers to the internal components of buses and the
interconnections among the IP cores. The widely accepted
on-chip bus, AMBA AHB [2] defines a set of bus interface to
facilitate basic (single) and burst read/write transactions.
AHB [3] & [4] also defines the internal bus architecture,
which is mainly a shared bus composed of multiplexors. The
multiplexer-based bus architecture works well for a design
with a small number of IP cores. When the number of
integrated IP cores increases, the communication between IP
cores also increase and it becomes quite frequent that two or
more master IPs would request data from different slaves at
the same time. The shared bus architecture often cannot
provide efficient communication since only one bus
transaction can be supported at a time. To solve this problem,
two bus protocols have been proposed recently. One is the
Advanced eXtensible Interface protocol (AXI) [1] proposed
by the ARM company. AXI defines five independent
channels (write address, write data, write response, read
address, and read data channels). Each channel involves a set
of signals. AXI does not restrict the internal bus architecture
and leaves it to designers. Thus designers are allowed to
integrate two IP cores with AXI by either connecting the

wires directly or invoking an in-house bus between them. The
other bus interface protocol is proposed by a non-profitable
organization, the Open Core Protocol – International
Partnership (OCP-IP) [3] .OCP is an interface (or socket)
aiming to standardize and thus simplify the system
integration problems. It facilitates system integration by
defining a set of concrete interface (I/O signals and the
handshaking protocol) which is independent of the bus
architecture. Based on this interface IP core designers can
concentrate on designing the internal functionality of IP
cores, bus designers can emphasize on the internal bus
architecture, and system integrators can focus on the system
issues such as the requirement of the bandwidth and the
whole system architecture. In this way, system integration
becomes much more efficient. Most of the bus functionalities
defined in AXI [2] and OCP are quite similar. The most
conspicuous difference between them is that AXI divides the
address channel into independent write address channel and
read address channel such that read and write transactions can
be processed simultaneously. However, the additional area of
the separated address channels is the penalty.

2. Over View of OCP Functionalities

We first describe the various bus functionalities including;

 Burst
 Lock
 Pipelined
 Out-Of-Order Transactions

Paper ID: 020131319 352

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

2.1 Burst Transactions

The burst transactions allow the grouping of multiple
transactions that have a certain address relationship, and can
be classified into multi-request burst and single-request burst
according to how many times the addresses are issued.
FIGURE 1 shows the two types of burst read transactions.
The multi-request burst as defined in AHB is illustrated in
FIGURE 1(a) where the address information must be issued
for each command of a burst transaction (e.g., A11, A12, A13
and A14). This may cause some unnecessary overhead. In the
more advanced bus architecture, the single-request burst
transaction is supported. As shown in FIGURE 1(b), which is
the burst type defined in AXI, the address information is
issued only once for each burst transaction. In our proposed
bus design we support both burst transactions such that IP
cores with various burst types can use the proposed on-chip
bus without changing their original burst behavior.

Figure 1: Burst transactions

2.2 Lock Transactions

Lock is a protection mechanism for masters that have low bus
priorities. Without this mechanism the read/write transactions
of masters with lower priority would be interrupted whenever
a higher-priority master issues a request. Lock transactions
prevent an arbiter from performing arbitration and assure that
the low priority masters can complete its granted transaction
without being interrupted.

2.3 Pipelined transactions (outstanding transactions)

Figure 2(a) and 2(b) show the difference between non-
pipelined and pipelined (also called outstanding in AXI) read
transactions. In FIGURE 2(a), for a non-pipelined transaction
a read data must be returned after its corresponding address is
issued plus a period of latency. For example, D21 is sent right
after A21 is issued plus t. For a pipelined transaction as
shown in FIGURE 2(b), this hard link is not required. Thus
A21 can be issued right after A11 is issued without waiting
for the return of data requested by A11 (i.e., D11-D14).

Figure 2: Pipelined transactions

2.4 Out-of-order transactions

The out-of-order transactions allow the return order of
responses to be different from the order of their requests.

These transactions can significantly improve the
communication efficiency of an SOC system containing IP
cores with various access latencies as illustrated in FIGURE
3. In FIGURE 3(a) which does not allow out-of-order
transactions, the corresponding responses of A21 and A31
must be returned after the response of A11. With the support
of out-of-order transactions as shown in FIGURE 3(b), the
response with shorter access latency (D21, D22 and D31) can
be returned before those with longer latency (D11-D14) and
thus the transactions can be completed in much less cycles.

Figure 3: out-of-order transctions

3. Proposed System Block Diagram

The block diagram which explains the basic operation and
characteristics of OCP is shown in Figure 5.The OCP defines
a point-to-point interface between two communicating
entities such as IP cores and bus interface modules. One
entity acts as the master of the OCP instance, and the other as
the slave. Only the master can present commands and is the
controlling entity. The slave responds to commands presented
to it, either by accepting data from the master, or presenting
data to the master. For two entities to communicate there
need to be two instances of the OCP connecting them such as
one where the first entity is a master, and one where the first
entity is a slave.

Figure 4: Basic block diagram of OCP instance

Figure 4 shows a simple system containing a wrapped bus
and three IP core entities such as one that is a system target,
one that is a system initiator, and an entity that is both. The
characteristics of the IP core determine whether the core
needs master, slave, or both sides of the OCP [5] and the
wrapper interface modules must act as the complementary
side of the OCP for each connected entity. A transfer across
this system occurs as follows.

A system initiator (as the OCP master) presents command,
control, and possibly data to its connected slave (a bus
wrapper interface module). The interface module plays the
request across the on-chip bus system. The OCP does not
specify the embedded bus functionality. Instead, the interface
designer converts the OCP request into an embedded bus
transfer. The receiving bus wrapper interface module (as the

Paper ID: 020131319 353

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

OCP master) converts the embedded bus operation into a
legal OCP command. The system target (OCP slave) receives
the command and takes the requested action.

Figure 5: Architecture of Proposed OCP

4. Hardware Design of the On- Chip Bus

A crossbar architecture is employed such that more than one
master can communicate with more than one slave
simultaneously. If not all masters require the accessing paths
to all slaves, partial crossbar architecture is also allowed.

4.1 Arbiter
In traditional shared bus architecture, resource contention
happens whenever more than one master requests the bus at
the same time. For a crossbar or partial crossbar architecture,
resource contention occurs when more than one master is to
access the same slave simultaneously. In the proposed design
each slave IP is associated with an arbiter that determines
which master can access the slave.

4.2 Decoder

Since more than one slave exists in the system, the decoder
decodes the address and decides which slave return response
to the target master. In addition, the proposed decoder also
checks whether the transaction address is illegal or
nonexistent and responses with an error message if necessary.

4.3 FSM-M & FSM-S

Depending on whether a transaction is a read or a write
operation, the request and response processes are different.
For a write transaction, the data to be written is sent out
together with the address of the target slave, and the
transaction is complete when the target slave accepts the data
and acknowledges the reception of the data. For a read
operation, the address of the target slave is first sent out and
the target slave will issue an accept signal when it receives
the message. The slave then generates the required data and

sends it to the bus where the data will be properly directed to
the master requesting the data. The read transaction finally
completes when the master accepts the response and issues an
acknowledge signal. In the proposed bus architecture, we
employ two types of finite state machines, namely FSM-M
and FSM-S to control the flow of each transaction. FSM-M
acts as a master and generates the OCP signals of a master,
while FSM-S acts as a slave and generates those of a slave.
These finite state machines are designed in a way that burst,
pipelined, and out-or-order read/write transactions can all be
properly controlled.

A. Experiment and analysis
The module open core protocol (ocp) has been designed using
verilog,vhdl code. The functionality of the design was
verified using modelsim and synthesized using Xilinx ISE
design suite 12.1 version.

B. Simulation and Synthesis Results

Figure 6: Simulation result of 4-bust operation

Figure 7: Synthesis of OCP

A multimedia SOC design [8] is used that contains an ARM9
processor, a Parallel Architecture Core (PAC) DSP processor,
a RAM, a ROM and some peripheral devices. Originally the
on-chip bus is a multi-layer bus consisting of two AHB-lite
busses modeled with a commercial bus library (CoWare) The
ARM9 processor is connected to one AHB-lite bus, and the
PAC DSP processor is connected to the other. In the
experiment, we replace the AHB-lite bus connecting the PAC
DSP processor with the proposed on-chip bus and verify the
whole SOC design with an H.264 decoding procedure.

Experimental results show that the proposed on-chip bus
deals with all the communications in the SOC well. The
simulation times of decoding one frame are about 48.6 and
44.3 seconds before and after the replacement, respectively. It
should be pointed out that even though both the proposed bus
and the one using CoWare bus library are cycle-accurate; our

Paper ID: 020131319 354

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

proposed bus is further a pin-accurate one but the one from
CoWare is not. To focus on the efficiency evaluation of the
crossbar bus architecture, we design an SOC system which
contains four masters (IP1 and IP2, IP3, IP4) and Four slaves
(IP5, IP6 and IP7, IP8). In this experiment we compare the
communication efficiency of the SOC systems with the
shared bus architecture and the crossbar bus architecture. The
transactions used in the experiment are described as follows.

1) Master IP2 first requests a series of burst WR transactions
to slave IP6and a WR transaction to slave IP7.

2) Master IP1 then requests a series of burst RD transactions
to slave IP6.

3) Master IP1 then requests a series of burst WR transactions
to slave IP8, and master IP2 requests a series of burst WR

4) Transactions to slave IP6.
5) Master IP2 requests a series of burst RD transactions to

slave IP8.

The procedure from step2 to step4 is iterated for 100
iterations.

The execution of these transactions on the crossbar
architecture can be illustrated where parallel communication
between different masters and slaves happens in time
intervals .The behavior on the share bus architecture is all in
series without any parallel communication. Experimental
results show that the proposed bus with crossbar
interconnection reduces about 23.35% communication cycles
as comparing to the tradition shared bus architecture such as
AHB.

In the last experiment, we evaluate the efficiency of out-of
order transactions using the proposed scheduler. We assume
that the access latency of the slave IP5 and IP6 in are 1 cycle
and 3 cycles, respectively. The slave IP8 has the access
latency of 5 cycles when it is accessed by master IP1 and two
cycles when it is accessed by master IP2. In the simulation,
IP1 first requests a series of out-of-order WR transactions,
IP2 then requests a series of out-of-order RD transactions.
After that, IP2 requests a series of out-of-order WR
transactions, and IP1 finally requests a series of out-of order
RD transactions. The simulation results show that when each
series of these requests contain 6000 transactions, the
proposed scheduler reduces 67.16% communication cycles as
comparing to a bus that supports only in-order transactions.

4.4 Application

Since it is an IP block, it can be used in any kind of SOC
Application. The application can be listed as follows.

 SRAM
 Processor

5. Conclusion

Cores with OCP interfaces and OCP interconnect systems
enable true modular, plug-and-play integration; allowing the
system integrators to choose cores optimally and the best
application interconnect system. This allows the designer of
the cores and the system to work in parallel and shorten
design times. In addition, not having system logic in the cores
allows the cores to be reused with no additional time for the

core to be re-created. Depending upon the real time
application these intellectual properties can be used.

References
[1] Advanced Microcontroller Bus Architecture (AMBA)

Specification Rev 2.0 & 3.0, http://www.arm.com.
[2] Open Core Protocol (OCP) Specification,

http://www.ocpip.org/home.
[3] Y.-T. Kim, T. Kim, Y. Kim, C. Shin, E.-Y. Chung, K.-

M. Choi, J.-T. Kong, S.-K. Eo, “Fast and Accurate
Transaction

[4] Level Modeling of an Extended AMBA2.0 Bus
Architecture,” Design, Automation, and Test in Europe,
pages 138-139, 2005.

[5] G. Schirner and R. Domer, “Quantitative Analysis of
Transaction Level Models for the AMBA Bus,” Design,

[6] Automation, and Test in Europe, 6 pages, 2006.
[7] C.-K. Lo and R.-S. Tsay, “Automatic Generation of

Cycle Accurate and Cycle Count Accurate Transaction
Level Bus

[8] Models from a Formal Model,” Asia and South Pacific
Design Automation Conference, pages 558-563, 2009.

[9] N.Y.-C. Chang, Y.-Z. Liao and T.-S. Chang, “Analysis
of Shared-link AXI,” IET Computers & Digital
Techniques, Volume 3, Issue 4, pages 373-383, 2009.

[10] IBM Corporation, “Prioritization of Out-of-Order Data
Transfers on Shared Data Bus,” US Patent No.
7,392,353, 2008.

[11] CoWare website, http://www.coware.com

Paper ID: 020131319 355

