Existence Results for Quasilinear Delay Integrodifferential Equations with Nonlocal Conditions Via Measures of Noncompactness

Francis Paul Samuel¹, Tumaini Rukikoloisso²

¹Department of Mathematics and Physics, University of Eastern Africa, Baraton, Eldoret 2500 - 30100 Kenya
²Department of Mathematics and Physics, University of Eastern Africa, Baraton, Eldoret 2500 - 30100 Kenya

Abstract: We study the existence of mild solutions for quasilinear delay integrodifferential equations with nonlocal Cauchy problem in Banach spaces. The results are established by using Hausdorff’s measure of non-compactness.

Keywords: Mild solution, nonlocal conditions; Hausdorff’s measure of noncompactness

1. Introduction

The notion of a measure of non-compactness turns out to be a very important and useful tool in many branches of mathematical analysis. The notion of a measure of weak compactness was introduced by De Blasi [9] and was subsequently used in numerous branches of functional analysis and the theory of differential and integral equations. El-Sayed [11] proves the existence theorem of monotonic analysis and the theory of differential and integral equations. The study of abstract nonlocal initial value problems was initiated by Byszewski [6, 7]. Balachandran and Paul Samuel [3] give the existence and uniqueness of mild and classical solutions for quasi linear delay integrodifferential equations in Banach space has been studied by several authors [3, 8, 10, 14]. Pazy [14] considered the following problem of existence of solutions of quasi linear evolution equations in Banach space has been studied by several authors [3, 8, 10, 14]. Pazy [14] considered the following problem of existence of solutions of quasi linear evolution equations in Banach space has been studied by several authors.

2. Preliminaries

Let X be a Banach space with norm $|| \cdot ||$. Let $C([0,T];X)$ be the space of X-valued continuous functions on $[0,T]$ with the norm $\|u\| = \sup_{t \in [0,T]} \|u(t)\|$ for $u \in C([0,T];X)$, and denoted $L(0,T;X)$ by the space of X-valued Bochner integrable functions on $[0,T]$ with the norm $\|u\|_L = \int_0^T \|u(t)\|dt$. The Hausdorff’s measure of non compactness χY is defined by $\chi Y = \inf \{r > 0, B \text{ can be covered by finite number of balls with radii } r\}$ for bounded set B in a Banach space Y.

Lemma 2.1 [4]. Let Y be a real Banach space and $B, E \subseteq Y$ be bounded, with the following properties:

1) B is pre compact if and only if $\chi B = 0$.
2) $\chi Y \subseteq \chi \overline{\chi B} \subseteq \chi \overline{\chi Y}$, where \overline{B} means the closure and convex hull of B respectively.
3) $\chi Y \leq \chi (E)$, where $B \subseteq E$.
4) $\chi (B + E) \leq \chi B + \chi E$, where $B + E = \{x + y : x \in B, y \in E\}$.
5) $\chi (B \cup E) \leq \max \{\chi B, \chi E\}$.
6) $\chi (\lambda B) \leq ||\lambda|| \chi B$ for any $\lambda \in \mathbb{R}$.
7) If the map $T: D(T) \subseteq Y \rightarrow Z$ is Lipschitz continuous with constant k the $\chi T(B) \leq k \chi T(Y)$ for any bounded subset $B \subseteq D(T)$, where Z is Banach space.
8) $\chi Y \leq \inf \{d_Y(B, E) : E \subseteq Y\}$ is finite valued, where $d_Y(B, E)$ means the nonsymmetric (or symmetric) Hausdorff distance between B and E in Y.
9) If $\{W_n\}_{n=1}^{+\infty}$ is a decreasing sequence of bounded closed nonempty subset of Y and $\lim_{n \rightarrow +\infty} \chi Y(W_n) = 0$, then $\bigcap_{n=1}^{+\infty} W_n$ is nonempty and compact in Y.

\[u(t) + A(t, u(t)) = f(t, u(t)), \]
\[u(0) = u_0, \]
Lemma 2.2 (Darbo-Sadovskii [4]). If $W \subseteq C([0,T];X)$ is bounded, closed and convex, the continuous map $F : W \to W$ is a χ-contraction, then the map F has at least one fixed point in W. In this we denote by χ the Hausdorff’s measure of non-compactness of X and denote $\overline{\chi}$ by the Hausdorff’s measure of non compactness of $C([a,T];X)$. To discuss the existence, we need the following Lemmas in this paper.

Lemma 2.3 [4]. If $W \subseteq C([0,T];X)$ is bounded, Then $\chi(W(t)) \leq \chi(W)$ for all $t \in [0,T]$, where $W(t) = \{u(t); \ u \in W\} \subseteq X$. Furthermore if W is equi-continuous on $[a,T]$, then $\chi(W(t))$ is continuous on $[a,T]$ and $\chi_{a}(W) = \sup\{\chi(W(t)), t \in [a,T]\}$.

Lemma 2.4 [13]. If $\{u_{n}\}_{n=1}^{\infty} \subseteq L^{1}(a,T;X)$ is uniformly integrable, then the function $\chi(\{u_{n}\}_{n=1}^{\infty})$ is measurable and

$$\chi(\{\int_{0}^{t}u_{n}(s)ds\}) \leq 2 \int_{0}^{t} \chi(\{u_{n}\}_{n=1}^{\infty})ds$$

for all $t \in [0,T]$, where $\int_{0}^{t}u_{n}(s)ds = (\int_{0}^{t}u(s)ds; u \in W)$.

The C_{0} - semigroup $U_{t}, (t,s)$ is said to be equi continuous for $T > 0$ for all bounded set B in X. The following lemma is obvious.

Lemma 2.6 If the evolution family $\{U_{t}(t,s)\}_{t \in [0,T]}$ is equi-continuous and $\eta \in L(0,T;R^{+})$, then the set $\{\int_{0}^{t}U_{s}(t,s)u(s)ds\}, ||u(s)|| \leq \eta(s)$ for i.e $s \in [0,T]$ is equi-continuous for $t \in [0,T]$.

From [8], we know that for any fixed $\in C([0,T];X)$, there exist a unique continuous function $U_{u_{0}}: [0,T] \times [0,T] \to B(X)$ defined on $[0,T] \times [0,T]$ such that

$$U_{u_{0}}(t,s) = \int_{s}^{t}A_{u_{0}}u_{0}(w,s)dw$$

where $B(X)$ denote the Banach space of bounded linear operators from X to X with the norm $||F|| = sup(||F(u)||; ||u|| = 1)$, and I stands for the identity operator on X. $A_{u}(t) = A(t,u(t))$. We have $U_{u_{0}}(t,s) = I_{t, t_{0}}u_{0}(r,s) = U_{u_{0}}(r,s)$, where $(t,s) \in [0,T] \times [0,T]$ and $A_{u_{0}}(t)u_{0}(t,s)$ for almost all $t \in [0,T]$. For a mild solution of (1) - (2) we mean a function $u_{0} \in C([0,T];X)$ and u_{0} $\in X$ satisfying the integral equation

$$u(t) = \int_{0}^{t}u_{0}(0)0h(u) + \int_{0}^{t}u_{0}(t,s)\{g(s,u(\alpha(s))) + \int_{0}^{t}g(s,\tau, u(\beta(\tau)))d\tau\}ds$$

3. The Existence of Results for Compact

In this section, we give some existence results when his compact and f satisfies the conditions with respect to Hausdorff’s measure of non-compactness and its applications in differential equations in Banach spaces. We give some existence results of the nonlocal problem (1)- (2). We assume the following assumptions:

(H1) The evolution family $\{U_{u_{0}}(t,s)\}_{t \in [0,T]}$ generated by $A(t,u)$ is equi-continuous, and $||U_{u_{0}}(t,s)|| \leq M_{p}$ for almost $t,s \in [0,T]$

(H2) $f : [0,T] \times X \to X$ satisfies the Caratheodory type conditions and there exist $m_{1} \in L[0,T]$ and $b_{1} \geq 0$ such that

$$||f(t,u)|| \leq m_{1}(t)||u||, t.a.e.\ \in [0,T], u \in R^{+}$$

(H3) (a) $h : C([0,T];X) \to X$ is continuous and compact.

(b) There exist $N > 0$ such that $||h(u)|| \leq N_{0}$ for all $u \in C([0,T];X)$.

(H4) (a) $g : [0,T] \times [0,T] \times X \to X$ satisfies the Caratheodory-type conditions, (i.e.) $g(.,.,u)$ is measurable for all $u \in X$ and $g(t,s,.)$ is continuous for a.e $t,s \in [a,T]$, there exist $m_{2} \in L[0,T]$ and $b_{2} \geq 0$ such that

$$\int_{0}^{t}g(s,t,u)ds \leq \int_{0}^{s}m_{2}(t,s)b_{2}||u||$$

for a.e $\in [0,T], u \in R^{+}$

(b) There exist $\eta \in L(0,T;R^{+}), \xi \in L(0,\infty)$, such that $\eta(t) = \eta(t)(\xi)D(\eta)$ for $a.e t,s \in [0,T]$, and for any bounded subset $D \subseteq C([0,T],X)$. Herefore let $\eta(t) \leq K_{1}$ and $\xi(t) \leq K_{2}$.

(H5) $\alpha, \beta : [0,T] \to [0,T]$ is a non decreasing and there exist positive constants α_{1} and β_{2} such that $\alpha(t) \geq \alpha_{1}$ and $\beta(t) \geq \beta_{2}$ respectively for $t \in [0,T]$.

Theorem: 3.1 Under the assumptions (H1) - (H2) are satisfied, then the nonlocal initial value problem. Let $u_{0} \in Y$ and the family $A(t,b)$ of linear operators for $t \in [0,T]$ and (1) - (2) has at least one mild solution.

Proof.

Let $\Omega(t)$ be a solution of the scalar equation

$$\Omega(t) = M_{h}N_{0} + M_{h}m_{1}(t)b_{1}/\alpha_{1} + m_{2}(t,s)b_{2}/\beta_{2} \int_{0}^{t}\Omega(s)ds$$

for $t \in [0,T]$.

Consider the map $F : C([0,T];X) \to C([0,T];X)$ defined by

$$(Fu)(t) = U_{0}(t,0)0h(u) + \int_{0}^{t}U_{t}(t,s)\{f(s,u(\alpha(s))) + \int_{0}^{t}g(s,\tau, u(\beta(\tau)))d\tau\}ds$$

for all $u \in C([0,T];X)$. We can show that F is continuous by the usual techniques.

Let us take

$$W_{0} = \{u \in C([0,T];X) ||u(t)|| \leq \Omega(t), t \in [0,T]\}$$

Then $W_{0} \subseteq C([0,T];X)$ is bounded and convex. We define $W_{1} = \text{conv}(W_{0})$, where conv means the closure of the convex hull in $C([0,T];X)$. As $U_{0}(t,s)$ is equi-continuous, g is compact and $\Omega_{0} \subseteq C([0,T];X)$ is bounded, due to Lemma 2.7 and the assumption (H4)(b), $W_{1} \subseteq C([0,T];X) is bounded closed convex non empty and equi-continuous on $[0,T]$.

Volume 3 Issue 4, April 2014

www.ijsr.net
For any $u \in F(W_0)$, we know
\[
||u(t)|| \leq M_0 N_0 + M_0 \int_0^t \left| f(s, u(\alpha(s))) \right| ds + M_0 \int_0^t \left| g(s, \tau, u(\beta(\tau))) \right| d\tau ds
\]
\[
\leq M_0 N_0 + M_0 \int_0^t m_1(s)b_1||u(\alpha(s))||ds
+ M_0 \int_0^t m_2(s, \tau)b_2||u(\beta(\tau))||d\tau ds
\]
\[
\leq M_0 N_0 + M_0 m_1(t)b_1\int_0^t ||u(\alpha(s))||a'(s)/\delta_1 ds
+ M_2(s, \tau)b_2\int_0^s ||u(\beta(\tau))|||\beta'(\tau)/\delta_2 d\tau ds
\]
\[
\leq M_0 N_0 + M_0 m_1(t)b_1/\delta_1 + M_2(s, \tau)b_2/\delta_2 \int_0^t \Omega(s)ds,
=\Omega(t), \text{ for } t, s, \tau \in [0, T].
\]

It follows that $W_1 \subset W_0$. We define $W_{n+1} = \overline{co W_n}$, for $n = 1, 2, 3, \cdots$. From above we know that W_n is a decreasing sequence of bounded, closed, convex, equicontinuous on $[0, T]$ and non empty subsets of $C([0, T]; X)$.

Now for $n \geq 1$ and $t \in [0, T], W_n(t)$ and $F(W_n(t))$ are bounded subsets of X, hence, for any $\varepsilon > 0$, there is a sequence $\{u_k\}_{k=1}^{\infty} \subset W_n$ such that (see, e.g.[5], pp125).

\[
\chi(W_{n+1}) = \chi(FW_n(t))
\]
\[
\leq \chi(\int_0^t U_u(t, s)f(s, u_k(u(s)))_{k=1}^{\infty}) ds
+ \int_0^t g(s, \tau, u_k(\beta(\tau)))_{k=1}^{\infty} d\tau ds
\]
\[
\leq 2M_0 \int_0^t \chi(f(s, u_k(u(s))))_{k=1}^{\infty} d\tau ds
+ 4M_0 \int_0^t \chi(g(s, \tau, u_k(\beta(\tau))))_{k=1}^{\infty} d\tau ds
\]
\[
\leq 2M_0 K_1 \int_0^t \chi((u_k(\alpha(s))))_{k=1}^{\infty} ds
+ 4M_0 K_2 \int_0^t \chi((u_k(\beta(\tau))))_{k=1}^{\infty} d\tau ds
\]
\[
\leq 2M_0 K_1/\delta_1 \int_0^t \chi((u_k(s)))_{k=1}^{\infty} ds
+ 4M_0 K_2/\delta_2 \int_0^t \chi((u_k(s)))_{k=1}^{\infty} ds + \varepsilon
\]
\[
= (2M_0 K_1 \frac{1}{\delta_1} + \frac{2K_2}{\delta_2}) \int_0^t \chi((u_k(s)))_{k=1}^{\infty} ds + \varepsilon
\]

Since $\varepsilon > 0$ is arbitrary, it follows that from the above inequality that
\[
\chi(W_{n+1}(t)) \leq (2M_0 K_1 \frac{1}{\delta_1} + \frac{2K_2}{\delta_2}) \int_0^t \chi(W_n(s)) ds + \varepsilon
\]
for all $t \in [0, T]$. Because W_n is decreasing for n, we have
\[
\sigma(t) = \lim_{n \to \infty} \chi(W_n(t))
\]
for all $t \in [0, T]$. From (9), we have
\[
\sigma(t) \leq (2M_0 K_1 \frac{1}{\delta_1} + \frac{2K_2}{\delta_2}) \int_0^t \sigma(s) ds
\]
for $t \in [0, T]$, which implies that $\sigma(t) = 0$ for all $t \in [0, T]$. By Lemma 2.3, we know that $\lim_{n \to \infty} \chi(W_n(t)) = 0$.

Using Lemma 2.1 we know that $W = \bigcap_{m=1}^{\infty} W_n$ is compact and nonempty $C([0, T]; X)$ and $F(W) \subset W$. By the famous Schauder’s fixed point theorem, there exist at least one mild solution u of the initial value problem (1) – (2), where $u \in W$ is a fixed point of the continuous map F.

Remark 3.2. If the functions f and g are compact Lipschitz continuous (see e.g. [6, 7, 15], then (H4) is automatically satisfied. In some of the early related results in references and above results, it is supposed that the map h is uniformly bounded. We indicate here that this condition can be released. In fact, if h is compact, then it must be bounded on bounded set. Here we give an existence result under growth condition of f and g, when h is not uniformly bounded. Precisely, we replace the assumptions (H4) by

\[
(H6) \text{ There exist a functions } p \in L(0, T; R^+) \text{ and } q \in L(0, T; R^+). \text{ The constants } b_1, b_2 > 0 \text{ such that}
\]
\[
||f(t, u)|| \leq p(t)b_1||u||,
\]
\[
\int_0^t ||g(t, s, u)|| ds \leq q(t)b_2||u||
\]
for $t \in [0, T]$ and all $u \in C([0, T]; X)$.

Theorem 3.2. Suppose that the assumptions (H1) – (H6) are satisfied, then the equation (1) – (2) has at least one mild solution if

\[
\lim sup_{r \to \infty} \frac{M_0}{r} \left(\varphi(r) + rT \frac{p b_1 + q b_2}{\delta_1 + \delta_2} \right) < 1. (10)
\]
Where $\varphi(r) = \sup(\|h(u)\|, ||u|| \leq r)$.

Proof. The inequality (10) implies that there exist a constant $r > 0$ such that
\[
M_0 (\varphi(r) + rT \frac{p b_1 + q b_2}{\delta_1 + \delta_2}) < r.
\]
Just as in the proof of Theorem 3.1, let $W_0 = \{u \in C([0, T]; X), ||u(t)|| \leq r\}$ and $W_1 = \overline{co W_0}$. Then for any $u \in W_1$, we have
\[
||u(t)|| \leq ||U_0(t, 0) h(u)|| + \int_0^t U_0(t, s) f(s, u(a(s))) ds + \int_0^t g(s, \tau, u(\beta(\tau))) d\tau ds,
\]
\[
\leq (2M_0 K_1 \frac{1}{\delta_1} + \frac{2K_2}{\delta_2}) \int_0^t \chi((u_k(s)))_{k=1}^{\infty} ds + \varepsilon
\]
4. The Existence of Results for Lipschitz

In the previous section, we obtained the existence results when \(h \) is compact but without the compactness of \(U_0(t,s) \) is satisfied, then the equation \((1) \) - \((2) \) has at least one mild solution provided that for \(t \in [0,T] \). It means that \(W_1 \subset \subset W_0 \). So, we can complete the proof similarly to Theorem 3.1.

\[
\|h(u) - h(v)\| \le L_0 \|u - v\|, \; u, v \in C([0,T];X).
\]

Theorem: 4.1 Suppose that the assumptions \(H_1 \), \(H_2 \), \(H_4 \), \(H_6 \) are satisfied, then the equation \((1) \) - \((2) \) has at least one mild solution provided that

\[
(M_0L_0 + TM_0K_1 \frac{1}{\delta_1} + \frac{2K_2}{\delta_2}) < 1. \quad (11)
\]

Proof. Consider the map \(F_1, F_2 : C([0,B]; X) \rightarrow C([0,B];X) \) defined by \(F_1 + F_2 = F \), where

\[
F_1(u)(t) = U_0(t,0)h(u),
\]

\[
F_2(u)(t) = \int_0^t U_0(t,s) f(s, u(\alpha(s))) ds + \int_0^s g(s, \tau, u(\beta(\tau))) d\tau ds,
\]

for \(u \in C([0,B]; X) \). As defined in the proof of Theorem 3.1. We define \(W_0 = \{ u \in C([0,B]; X) : \|u(t)\| \le \Omega(t) \text{ for all } t \in [0,T] \} \) and let \(W = \overline{C_{00}F(W)} \). Then from the proof of Theorem 3.1 we know that \(W \) is an abounded closed convex and equi continuous subset of \(C([0,T];X) \) and \(F \subset W \). We shall prove that \(F \) is a contraction on \(W \). Then Darbo-Sadovskii's fixed point theorem can be used to get a fixed point of \(F_{\infty} \), which is a mild solution of \((1) \) - \((2) \). First, for every bounded subset \(B \subset W \), from the \((H_7) \) and \((H_6) \), we have

\[
\|x(\varphi(t))\| \le M_0 + TM_0K_1 \left(\frac{1}{\delta_1} + \frac{2K_2}{\delta_2} \right) < 1.
\]

Now, for any subset \(B \subset W \), due to Lemma 2.1, (12) and (13) we have

\[
X_c(B) \le X_e(F_1(B)) + X_e(F_2(B)) \quad \text{(13)}
\]

We know that \(F \) is an contraction on \(W \). By Lemma 2.2, there is a fixed point \(u \) of \(F \) in \(W \), which is a solution of \((1) \) - \((2) \). This completes the proof.

References

Author Profile

Paul Samuel Francis holds M.Sc., M. Phil., Ph. D., degrees in Mathematics from Bharathiar University, Coimbatore, Tamil Nadu, India. He has served as a Lecturer in Mathematics at the Spicer Memorial College, Pune, Maharashtra State, India, and also worked as an Assistant Professor in Mathematics at the Karunya University, Coimbatore, Tamil Nadu, India. He is currently the Chairperson in the Department of Mathematics and Physics at the University of Eastern Africa, Baraton, Eldoret, Kenya.

Tumaini Rukiko Lisso holds M.Sc. degree in Mathematics from the University of Dar es Salaam, Tanzania. He is also a holder of DEA in Mathematics Education from the University of Rene Descartes, Paris V in France. He has served as a Mathematics tutor at the Dar es Salaam Institute of Technology in Tanzania and as Lecturer of Mathematics at the University of Eastern Africa, Baraton, Eldoret, Kenya. He served as Chairperson of the Department of Mathematics and Physics from 2006 to 2013. He is currently the Acting Director of Affiliations, Linkages, and Extension Programmes at the University of Eastern Africa, Baraton, Eldoret, Kenya.