
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

Conceptual Cohesion of Classes(C3) Metrics

Girish K. K.1

M. Tech in Software Engineering, Department of Computer science and Engineering (PG)
Sarabhai Institute of Science and Technology (SIST), Trivandrum, India

Abstract: High cohesion is a desirable property of software as it positively impacts understanding, reuse, and maintenance. Currently
proposed measures for cohesion in Object-Oriented (OO) software reflect particular interpretations of cohesion and capture different
aspects of it. Existing approaches are largely based on using the structural information from the source code, such as attribute
references, in methods to measure cohesion. This paper proposes a new measure for the cohesion of classes in OO software systems
based on the analysis of the unstructured information embedded in the source code, such as comments and identifiers. The measure,
named the Conceptual Cohesion of Classes (C3), is inspired by the mechanisms used to measure textual coherence in cognitive
psychology and computational linguistics. This paper presents the principles and the technology that stand behind the C3 measure. An
open source eclipse plug-in is developed as part of this research work to demonstrate how well cohesion of classes is predicted using C3
metrics.

Keywords: Software cohesion, textual coherence, fault prediction, fault proneness, program comprehension, information retrieval, Latent
Semantic Indexing.

1. Introduction

It is widely accepted that object oriented development
requires a different way of thinking than traditional
structured development and software projects are shifting to
object oriented design. The main advantage of object
oriented design is its modularity and reusability. Object
oriented metrics are used to measure properties of object
oriented designs. Metrics are a means for attaining more
accurate estimations of project milestones, and developing a
software system that contains minimal faults. Project based
metrics keep track of project maintenance, budgeting etc.
Design based metrics describe the complexity, size and
robustness of object oriented and keep track of design
performance.

Software modularization, Object-Oriented (OO)
decomposition in particular, is an approach for improving
the organization and comprehension of source code. In order
to understand OO software, software engineers need to
create a well-connected representation of the classes that
make up the system. Each class must be understood
individually and, then, relationships among classes as well.
One of the goals of the OO analysis and design is to create a
system where classes have high cohesion and there is low
coupling among them. These class properties facilitate
comprehension, testing, reusability, maintainability, etc.

Software cohesion can be defined as a measure of the degree
to which elements of a module belongs together. Cohesion is
also regarded from a conceptual point of view. In this view,
a cohesive module is a crisp abstraction of a concept or
feature from the problem domain, usually described in the
requirements or specifications. Such definitions, although
very intuitive, are quite vague and make cohesion
measurement a difficult task, leaving too much room for
interpretation. In OO software systems, cohesion is usually
measured at the class level and many different OO cohesion
metrics have been proposed which try capturing different
aspects of cohesion or reflect a particular interpretation of
cohesion.

Proposals of measures and metrics for cohesion abound in
the literature as software cohesion metrics proved to be
useful in different tasks , including the assessment of design
quality, productivity, design, and reuse effort, prediction of
software quality, fault prediction, modularization of
software, and identification of reusable of components .Most
approaches to cohesion measurement have automation as
one of their goals as it is impractical to manually measure
the cohesion of classes in large systems. The trade- off is
that such measures deal with information that can be
automatically extracted from software and analyzed by
automated tools and ignore less structured but rich
information from the software (for example, textual
information). Cohesion is usually measured on structural
information extracted solely from the source code (for
example, attribute references in methods and method calls)
that captures the degree to which the elements of a class
belong together from a structural point of view. These
measures give information about the way a class is built and
how its instances work together to address the goals of their
design. The principle behind this class of metrics is to
measure the coupling between the methods of a class. Thus,
they give no clues as to whether the class is cohesive from a
conceptual point of view (for example, whether a class
implements one or more domain concepts) nor do they give
an indication about the readability and comprehensibility of
the source code.

Cohesion is usually measured on structural information
extracted solely from the source code (for example, attribute
references in methods and method calls) that captures the
degree to which the elements of a class belong together from
a structural point of view. These measures give information
about the way a class is built and how its instances work
together to address the goals of their design. The principle
behind this class of metrics is to measure the coupling
between the methods of a class. Thus, they give no clues as
to whether the class is cohesive from a conceptual point of
view (for example, whether a class implements one or more
domain concepts) nor do they give an indication about the
readability and comprehensibility of the source code.

Although other types of metrics were proposed by
researchers (SCDE, LORM, PSI etc) to capture conceptual

Paper ID: 020131221 1

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

aspects of cohesion, only a few such metrics use good and
efficient algorithms for information retrieval from
unstructured (comments and identifiers) data in the source
code. From the literature analysis, a need for an efficient and
pertinent metrics for conceptual cohesion arises
undoubtedly, supported by an efficient Information Retrieval
(IR) algorithm.

This paper propose a new measure for class cohesion, named
the Conceptual Cohesion of Classes (C3) [7], which captures
the conceptual aspects of class cohesion, as it measures how
strongly the methods of a class relate to each other
conceptually. The conceptual relation between methods is
based on the principle of textual coherence. We interpret the
implementation of methods as elements of discourse. There
are many aspects of a discourse that contribute to coherence,
including co-reference, causal relationships, connectives,
and signals. The source code is far from a natural language
and many aspects of natural language discourse do not exist
in the source code or need to be redefined. The rules of
discourse are also different from the natural language.

C3 is based on the analysis of textual information in the
source code, expressed in comments and identifiers. Once
again, this part of the source code, although closer to natural
language, is still different from it. Thus, using classic natural
language processing methods, such as propositional analysis,
is impractical or unfeasible. Hence, we use an Information
Retrieval (IR) technique, namely, Latent Semantic Indexing
(LSI), to extract, represent, and analyze the textual
information from the source code. Our measure of cohesion
can be interpreted as a measure of the textual coherence of a
class within the context of the entire system.

1.1 Problem definition

The designers and the programmers of a software system
often think about a class as a set of responsibilities that
approximate the concept from the problem domain
implemented by the class as opposed to a set of method-
attribute interactions.

Information that gives clues about domain concepts is
encoded in the source code as comments and identifiers.
Among the existing cohesion metrics for OO software, the
Logical Relatedness of Methods (LORM) and the Lack of
Conceptual Cohesion in Methods (LCSM) are the only ones
that use this type of information to measure the conceptual
similarity of the methods in a class. The philosophy behind
this class of metrics, into which this work falls, is that a
cohesive class is a crisp implementation of a problem or
solution domain concept. Hence, if the methods of a class
are conceptually related to each other, the class is cohesive.
From the above understanding, the hypothesis is " how to
utilize standard programming practices, especially
comments and proper identifier names in measuring
software cohesion of classes ".

The remainder of this paper is organized as follows: Section
2 describes the analysis of c3 metrics; Section 3 describes
the related works. Section 4 gives the conclusion.

2. Analysis of C3 Metrics

For the purpose of demonstrating the effectiveness of the C3
metrics, an open source eclipse plug-in is developed called
the C3 Metrics tool. As the input to the software, user feeds
the object oriented source code file. This step is very
essential, as the source code file forms the basis for the
calculation of C3 metric. It is from the source code file that
the tool extracts keywords for the calculation of C3 metrics.
The source code should follow all the universally accepted
industrial standards and naming conventions as well as
proper commenting. Identifier names and comments forms
the domain concept behind the source code. Reasonable
naming conventions and proper commenting are the driving
factors in the calculation of C3 metrics. So user is strictly
recommended to follow industrial coding standards in
developing source code.

As the source code file is an object oriented one, the system
first extract classes from the source code. As class cohesion
is our objective, extraction of classes is very essential. For
this, any parser can be used in parsing the source code. The
parser will identify which all are the classes in source code,
and extract the classes. The parser should extract not only
the classes in the source code, but also the methods inside
the classes. Method extraction is very important. Conceptual
class cohesion is predicted as how well methods of a class
are related to each other conceptually. So method extraction
along with class is very important.

The system will extract comments and identifier names
corresponding to each methods extracted previously to
produce relevant keywords. Irrelevant keywords are
discarded. A document in the corpus is created for each
method in every class. This is done by generating a matrix
with columns representing documents and rows representing
each terms. We call this matrix as term-document matrix.
The term-document matrix is simply a matrix with all the
terms in a collection on one axis and all the document on
other. If a term i appears one or more times in a document j,
then the value of i,jth element of the term-document matrix
is 1, otherwise 0. Latent Semantic Indexing (LSI) is applied
on the term-document matrix.

The metrics calculation phase includes the actual calculation
of C3 metrics based on the output received from the
Information Retrieval phase. In order to define and compute
the C3 metric, i am introducing a graph-based system
representation similar to those used to compute other
cohesion metrics. We consider an OO system as a set of
classes C = { c1, c2,.... cn } The total number of classes in
the system C is n = |C|. A class has a set of methods. For
each class c ϵ C, M(c) = { m1, m2,... mk } is the set of
methods of class c.

An OO system C is represented as a set of connected graphs
Gc = {G1, G2, … Gn}, with Gi representing class ci . Each
class ci ϵ C is represented by a graph Gi ϵ Gc such that Gi =
(Vi, Ei), where Vi = M(ci) is a set of vertices corresponding
to the methods in class ci , and Ei Ϲ Vi x Vi is a set of
weighted edges that connect pairs of methods from the class.

Paper ID: 020131221 2

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

a. Conceptual Similarity between Methods (CSM)

For every class ci ϵ C, all of the edges in Ei are weighted.
For each edge (mk, mj) ϵ Ei , we define the weight of that
edge CSM(mk, mj) as the conceptual similarity between the
methods mk and mj .

CSM(mk, mj) =
���

����

| ��� |� ∗ | ��� |�

b. Average Conceptual Similarity of Methods (ACSM)

ACSM(c) defines the degree to which methods of a class
belong together conceptually and, thus, it can be used as a
basis for computing the C3.
The ACSM c ϵ C is
ACSM (c) = �

�
∗ ∑ CSM(m�, m�)�

���

c. Conceptual Cohesion of Classes (C3)

For a class c ϵ C, the conceptual cohesion of c, C3(c) is
defined as follows:

C3(c) = �ACSM(c), if ACSM(c) > 0,
else, 0

2.1 Latent semantic indexing (ISI)

Latent Semantic Analysis [8] arose from the problem of how
to find relevant documents from search words. The
fundamental difficulty arises while comparing words to find
relevant documents, because what we really want to do is
compare the meanings or concepts behind the words. LSA
attempts to solve this problem by mapping both words and
documents into a concept space and doing the comparison in
this space.LSI uses a technique called Singular Value
Decomposition (SVD) by which a term- document matrix is
divided into three other matrixes - a term matrix, a singular
matrix and a document matrix. Initial term-document matrix
contains terms on one axis and documents on other. A cell in
the matrix denoted occurrence of a particular term in
document. After taking the dot product of the three matrices
we will get vector space for the document.

Latent Semantic Indexing (LSI) is a method for discovering
hidden concepts in document data. Each document and term
(word) is then expressed as a vector with elements
corresponding to these concepts. Each element in a vector
gives the degree of participation of the document or term in
the corresponding concept. The goal is not to describe the
concepts verbally, but to be able to represent the documents
and terms in a unified way for exposing document-
document, document-term, and term-term similarities or
semantic relationship which is otherwise hidden.

LSA can be viewed as both a model of the underlying
representation of knowledge and its acquisition or as a
practical method for estimating aspects of similarities in
meaning. As a model of knowledge, the coherence
predictions are similar to those of propositional modeling.
One can think of our experience of coherence as being an
effect of computing semantic relationships between pieces
of textual information. These semantic relationships are
based on our exposure to this information in the past.

Through our experiences of words co-occurring, or
occurring in similar contexts, we develop knowledge
structures which capture these relationships. The LSA
coherence predictions model both the effects of co-reference
and also the semantic relatedness as measured by the
analysis of contextual occurrences in the past. In this case,
the past experiences are based on a set of initial training
texts.

As a practical method, LSA produces a useful representation
for text research. The ability to measure text-to-text
relationships permits predictions of human judgments of
similarity. These judgments are based not only direct term
co-occurrence but also a deeper measure of inferred
semantic relationships based on past contextual experiences.
The results from the analyses described in this paper indicate
that LSA captures to a large degree the variable coherence of
texts which correlate highly with readers’ actual
comprehension of the texts. Since the method is automatic, it
permits rapid analyses of texts, thereby avoiding some of the
effort involved in performing propositional analyses and
allowing analyses that could not have been performed
previously. LSA can be conceived as being both a model of
the representation of knowledge and a practical method.

LSI overcomes two of the most problematic constraints of
Boolean keyword queries: multiple words that have similar
meanings (synonymy) and words that have more than one
meaning (polysemy). Synonymy is often the cause of
mismatches in the vocabulary used by the authors of
documents and the users of information retrieval systems.
As a result, Boolean or keyword queries often return
irrelevant results and miss information that is relevant. LSI
is also used to perform automated document categorization.
In fact, several experiments have demonstrated that there are
a number of correlations between the way LSI and human’s
process categorize text.

3. Related Works

Chidamber and Kemerer (CK) metric [1],[2] suite is a
structural metric suite for object oriented system. These
metrics are based on measurement theory and also reflects
the viewpoints of experienced OO software developers.
Chidamber and Kemerer (CK) metric suite is completely
related to the structural aspects of the source code. The
Chidamber & Kemerer metrics suite originally consists of 6
metrics calculated for each class. They are, Weighted
Methods per Class (WMC), Depth of Inheritance Tree
(DIT), Number of Children (NOC), coupling between
Object classes (CBO), Response for a Class (RFC), Lack of
Cohesion in Methods (LCOM). CK metric suites are
particularly designed for the structural aspects of class
cohesion. They do not provide a better understanding of
whether a class is conceptually cohesive.

Semantic Class Definition Entropy (SCDE) [5] metrics
introduces a semantically based metric for object oriented
systems. SCDE metrics measures the complexity of classes
in OO software, using domain related information from class
documentation (comments and identifiers). In order to
retrieve unstructured (comments and identifiers) information
from the source code, SCDE uses an information retrieval

Paper ID: 020131221 3

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 4, April 2014
www.ijsr.net

technique called PATRicia (Program Analysis Tool for
Reuse).

LOgical Relatedness of Method (LORM) [4] measures
logical cohesion of a class in OO software. Most desirable
cohesion is the model cohesion in which class represents a
single semantically meaningful concept. To determine
whether a class represents a single semantically meaningful
concept, the LORM metrics measures the conceptual
relatedness of methods of the class as determined by the
understanding of the class methods represented by a
semantic network of conceptual graphs.

Percentage of Shared Ideas (PSI) [9] is a metric for
measuring the semantic cohesion of a class in object-
oriented software. PSI uses information in a knowledge base
to quantify the cohesiveness of a class’s task in the problem
domain, allowing a clearer view of cohesion than code
syntax provides. Furthermore, this metric is independent of
code structure and could be calculated before
implementation, providing clues to design flaws earlier in
the software development cycle, when changes are less
expensive.

4. Conclusion

The hypothesis is “how to utilize standard programming
practices, especially comments and proper identifier names
in measuring software cohesion of classes ". The
experiments and findings do support the hypothesis. Classes
in object-oriented systems, written in different programming
languages, contain identifiers and comments which reflect
concepts from the domain of the software system. This
information can be used to measure the cohesion of
software. To extract this information for cohesion
measurement, Latent Semantic Indexing can be used in a
manner similar to measuring the coherence of natural
language texts.

This paper defines the conceptual cohesion of classes, which
captures new and complementary dimensions of cohesion
compared to a host of existing structural metrics. My major
findings are,

1) Conceptual cohesion is a highly advantageous, most

relevant aspect of software cohesion which was
concealed due to overwhelming usage of structural
cohesion.

2) Current industrial settings need a powerful software
cohesion metrics that can save software developers as
well as software testers bug identification time and
debugging time.

3) Most of the structural metrics used today will not
incorporate an important aspect of object oriented
concept- objects interrelate real world scenarios, which
can be solved using Conceptual Cohesion of Classes(C3)
metrics.

4) Conceptual Class Cohesion emphasis on the object (real
world scenario) and the object itself is the 'concept' in
Conceptual cohesion.

5) Comments and identifier names, even though appears
static in a source code file, are the best source of
information supply. In other words we can say that they
are the whole sale suppliers of information.

6) Latent Semantic Indexing (LSI) without any substitute is
the most efficient information retrieval approaches
available today.

I conclude based upon the aforementioned findings and
understandings that a Conceptual Cohesion Measuring tool
can help software developers as well as software testers and
may revolutionalize the IT sector, the software engineering
field and research field in near future.

5. Acknowledgment

This research study was supported by the Department of
Computer Science, Faculty of Software Engineering,
Sarabhai Institute of Science and Technology. I wish to
thanks to Prof. Dr. C. G. Sukumaran Nair, Head of CSE
Department and Ass. Prof. Mrs. Lizmol Stephen, my project
guide, for their invaluable support, encouragement,
supervision and useful suggestions throughout my work.

References

[1] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for

Object- Oriented Design,” IEEE Trans. Software Eng.,
vol. 20, no. 6, pp. 476-493, June 1994.

[2] D. Darcy and C. Kemerer, “OO Metrics in Practice,”
IEEE Software,vol. 22, no. 6, pp. 17-19, Nov./Dec. 2005.

[3] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K.
Landauer, and R. Harshman, “Indexing by Latent
Semantic Analysis,” J.Am. Soc.Information Science,
vol.41, pp.391-407, 1990.

[4] L. Etzkorn and H. Delugach, “Towards a Semantic
Metrics Suite for Object-Oriented Design,” Proc. 34th
Int’l Conf. Technology of Object-Oriented Languages
and Systems, pp. 71-80, July 2000.

[5] L.H. Etzkorn, S. Gholston, and W.E. Hughes, “A
Semantic Entropy Metric,” J. Software Maintenance:
Research and Practice, vol. 14, no. 5, pp. 293-310,
July/Aug. 2002.

[6] A. Marcus and D. Poshyvanyk, “The Conceptual
Cohesion of Classes,” Proc. 21st IEEE Int’l Conf.
Software Maintenance, pp. 133-142, Sept. 2005.

[7] Bela Ujhazi, Rudolf Ferenc, D. Poshyvanyk, and Tibor
Gyimothy, "New Conceptual Coupling and Cohesion
Metrics for Object-Oriented Systems"

[8] Foltz, P. W., Kintsch, W. & Landauer, T. K. (1998), New
Mexico State University. The measurement of textual
coherence with Latent Semantic Analysis. Discourse
Processes, , 25,2&3, 285-307.

[9] Cara Stein, Letha Etzkorn, S. Gholston, Philip
Farrington, and Julie Fortune, "A Knowledge Based
Cohesion Metric for Object Oriented Software" IEEE
Journal of computer science, vol. 5, no 3, pp. 45-53

Paper ID: 020131221 4

