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Abstract: In high-dimensional feature spaces traditional clustering algorithms tend to break down in terms of efficiency and quality. 
Nevertheless, the data sets often contain clusters which are hidden in various subspaces of the original feature space. In high 
dimensional data, however, many of the dimensions are often irrelevant. These irrelevant dimensions confuse clustering algorithms by 
hiding clusters in noisy data .In this paper we propose parallel approximation algorithm localize the search for relevant dimensions 
allowing them to find clusters that exist in multiple, possibly overlapping subspaces. A broad evaluation based on real-world medical 
data sets demonstrates that is suitable to find all relevant subspaces in high dimensional, sparse data sets and produces better results 
than existing methods. 
 
Keywords: Subspace clustering, Dimensionality Reduction, Redundancy Awareness, Detecting Relevant Attributes, Greedy optimization. 
 
1. Introduction  
 
Several algorithms for discovering clusters of points in 
subsets of attributes have been proposed in the literature. 
They can be classified into two categories: subspace 
clustering algorithms, and projected clustering algorithms 
[1]. Subspace clustering [3] algorithms search for all clusters 
of points in all subspaces of a data set according to their 
respective cluster definition. A large number of overlapping 
clusters is typically reported. To avoid an exhaustive search 
through all possible subspaces, the cluster definition is 
typically based on a global density threshold that ensures 
anti-monotonic properties necessary for an Apriori style 
search [4]. However, the cluster definition ignores that 
density decreases with dimensionality. Large values for the 
global density threshold will result in only low-dimensional 
clusters, whereas small values for the global density 
threshold will result in a large number of low-dimensional 
clusters (many of which are meaningless), in addition to the 
higher-dimensional clusters. 
 
Projected clustering algorithms define a projected cluster as 
a pair (X; Y ), where X is a subset of data points, and Y is a 
subset of data attributes, so that the points in X are \close" 
when projected on the attributes in Y , but they are \not 
close" when projected on the remaining attributes. Projected 
clustering algorithms have an explicit or implicit measure of 
\closeness" on relevant attributes (e.g., small 
range/variance), and a \non-closeness" measure on irrelevant 
attributes (e.g., uniform distribution/large variance). A 
search method will report all projected clusters [2] in the 
particular search space that an algorithm considers. If only k 
projected clusters are desired, the algorithms typically use an 
objective function to define what the optimal set of k 
projected clusters is. 
 
2. Problem Statement  
 
Based on our analysis, we argue that a first problem for both 
projected and subspace clustering is that their objectives are 

stated in a way that it is not independent of the particular 
algorithm that is proposed to detect such clusters in the data 
- often leaving the practical relevance of the detected 
clusters unclear, particularly since their performance also 
depends critically on different set parameter values. A 
second problem for the most previous approaches is that 
they assume, explicitly or implicitly, that clusters have some 
point density controlled by user-defined parameters, and 
they will (in most cases) report some clusters. However, we 
have to judge if these clusters \stand out" in the data in some 
way, or, if, in fact, there are many structures alike in the 
data. Therefore, a density criterion for selecting clusters 
should be based on statistical principles.  

 
3. Related Works  
 
CLIQUE, ENCLUS, MAFIA, Cluster are grid based 
subspace clustering algorithms that use global density 
thresholds in a bottom-up, Apriori style discovery of 
clusters. Grid-based subspace clustering algorithms are 
sensitive to the resolution of the grid, and they may miss 
clusters inadequately oriented or shaped due to the 
positioning of the grid. SCHISM uses a variable, statistically 
aware, density threshold in order to detect dense regions in a 
grid-based discretization of the data. However, for the 
largest part of the search space, the variable threshold equals 
a global density threshold. SUBCLU [6] is a grid free 
approach that can detect subspace clusters with more general 
orientation and shape than grid-based approaches, but it is 
also based on a global density threshold [7, 8].   
 
Large amounts [9] of data are ubiquitous today. Data mining 
methods like clustering were introduced to gain knowledge 
from these data. Recently, detection of multiple clustering’s 
has become an active research area, where several 
alternative clustering solutions are generated for a single 
dataset. Each of the obtained clustering solutions is valid, of 
importance, and provides a different interpretation of the 
data. 
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In DUSC [5], a point is initially considered a core point if its 
density measure is F times larger than the expected value of 
the density measure under uniform distribution, which does 
not have anti-monotonic properties, and thus cannot be used 
for pruning the search space. As a solution, DUSC modifies 
the definition of a core point so that it is anti-monotonic, 
which, however, introduces a global density threshold. 
Several subspace clustering algorithms attempt to compute a 
succinct representation of the numerous subspace clusters 
that they produce, by reporting only the highest dimensional 
subspace clusters, merge similar subspace clusters, or 
organize them hierarchically. In this paper we propose HSM 
[10], which defines a new pattern model for heterogeneous 
high dimensional data. It allows data mining in arbitrary 
subsets of the attributes that are relevant for the respective 
patterns. Based on this model we propose an efficient 
algorithm, which is aware of the heterogeneity of the 
attributes. 

 
4. Proposed System  
 
Motivated by these observations, we propose a novel 
problem formulation that aims at extracting from the data 
axis-parallel regions that “stand out" in a statistical sense. 
Intuitively, a statistically significant region is a region that 
contains significantly more points than expected. In this 
paper, we consider the expectation under uniform 
distribution. The set of statistically significant regions R that 
exist in a data set is typically highly redundant in the sense 
that regions that overlap with, contain, or are contained in 
other statistically significant regions may themselves be 
statistically significant. Therefore, we propose to represent 
the set R through a reduced, non-redundant set of axis-
parallel statistically significant regions that in a statistically 
meaningful sense “explain" the existence of all the regions 
in R. We will formalize these notions and formulate the task 
of finding a minimal set of statistically significant 
\explaining" regions as an optimization problem. Exhaustive 
search is not a viable solution because of computational 
infeasibility. Propose parallel approximation algorithm for 
1) selecting a suitable set Rreduced in which we can efficiently 
search for 2) a smallest set P* that explains (at least) all 
elements in Rreduced. Our comprehensive experimental 
evaluation shows that parallel approximation significantly 
outperforms previously proposed projected and subspace 
clustering algorithms in the accuracy of both cluster points 
and relevant attributes found. 
 
4.1 Statistical Quality 
 
Let H be a hyper-rectangle in a subspace S. We use the 
methodology of statistical hypothesis testing to determine 
the probability that H contains AS (H) data points under the 
null hypothesis that the n data points are uniformly 
distributed in subspace S. The distribution of the test 
statistic, AS (H), under the null hypothesis is the Binomial 
distribution with parameters n and vol (H). 
 

               (1) 
 
The quality level α of a statistical hypothesis test is a fixed 
probability of wrongly rejecting the null hypothesis, when in 
fact it is true. α is also called  the rate of false positives or 
the probability of type I error. The critical value of a 

statistical hypothesis test is a threshold to which the value of 
the test statistic is compared to determine whether or not the 
null hypothesis is rejected. For a one-sided test, the critical 
value   is computed based on 
 

                        (2) 
 
for a two-sided test, the right critical value µR is computed 
by (2), and the left critical value  is computed based on 
 

                 (3) 
 
Where the probability is computed in each case using the 
distribution of the test statistic under the null hypothesis. 
 
A statistically significant hyper-rectangle H contains 
significantly more points than what is expected under 
uniform distribution, i.e., the probability of observing AS(H) 
many points in H, when the n data points are uniformly 
distributed in subspace S is less than α0.  
 
4.2 Relevant vs. Irrelevant Attributes 
 
Let H be a hyper-rectangle in a subspace S. As the 
dimensionality of S increases, vol(H) decreases towards 0, 
and, consequently, the critical value  decreases towards 1. 
Thus, in high dimensional subspaces, hyper-rectangles H 
with very few points may be statistically significant. 
 
Also, assume H is a statistically significant hyper-rectangle 
in a subspace S, and assume that there is another attribute a 

 S where the coordinates of the points in Supp Set(H) are 
uniformly distributed in dom(a). We could then add the 
smallest interval I0 = [l; u] to H that satisfies attr(I0) = a and 
Supp Set(I0) = H, i.e., l = minfx:ajx 2 SuppSet(H)g, and u = 
maxfx:ajx 2 SuppSet(H)g. The resulting hyper rectangle H0 
will then be statistically significant in subspace S0 = S [fag. 
This happens roughly speaking because the support stays the 
same, but the volume does not increase (AS(H) = AS(H0), 
vol(H0) · vol(H)); for a formal proof. Clearly, reporting 
statistically significant hyper rectangles such as H0 does not 
add any information, since their existence is “caused" by the 
existence of other statistically significant hyper rectangles to 
which intervals have been added in which the points are 
uniformly distributed along the whole range of the 
corresponding attributes.  
 
To deal with these problems, we introduce the concept of 
\relevant" attributes versus \irrelevant" attributes. To test 
whether points in Supp Set(H) are uniformly distributed in 
the whole range of an attribute a we use the Kolmogorov 
Smirnov goodness of first test for the uniform distribution 
with a significance level of the test of αK.  
 
4.3. Redundancy-Oblivious 
 
Given a data set D of n d-dimensional points, we would like 
to find in each subspace all hyper rectangles that satisfy the 
number of hyper rectangles in a certain subspace can be 
infinite. However, we consider, for each subspace, all unique 
Minimum Bounding Rectangles (MBRs) formed with data 
points instead of all possible hyper-rectangles. The reason is 
that adding empty space to an MBR keeps its support 
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constant, but it increases its volume; thus, it only decreases 
its statistical significance. 
 
Redundancy-oblivious problem: Find all unique subspace 
clusters in a set of n d-dimensional points. 
 
For any non-trivial values of n and d, the size of the search 
space for the redundancy-oblivious problem is obviously 
very large. There are 2d ¡ 1 subspaces, and the number of 
unique MBRs in each subspace S, that contain at least 2 
points, assuming all coordinates of n points to be distinct in 
S, is at least choose(n; 2) and upper bounded by choose(n; 2) 
+ choose(n; 3) + …….. + choose (n; 2 X dim(S)). 
 

                                  (4) 
 
Conceptually, the solution R to the redundancy-oblivious 
problem contains three types of elements: 1) a set of 
subspace clusters T representing the “true" subspace 
clusters, 2) a set representing the false positives reported by 
the statistical tests, and 3) a set of subspace clusters F 
representing subspace clusters that exist only because of the 
subspace clusters in T. We argue that reporting the entire set 
R is not only computationally expensive, but it will also 
overwhelm the user with a highly redundant amount of 
information, because of the large number of elements in F.  

 
4.4. Subspace Relationship 
 
Our goal is to represent the set R of all subspace clusters in a 
given data set by a reduced set Popt of subspace clusters such 
that the existence of each subspace cluster H  R can be 
explained by the existence of the subspace clusters Popt, and 
Popt should be a smallest set of subspace clusters with that 
property. Ideally, Popt = TTT . 
 
To achieve this goal, we have to define an appropriate 
Explain relationship, which is based on the following 
intuition. We can think of the overall data distribution as 
being generated by the \true" subspace clusters, which we 
hope to capture in the set Popt, plus background noise. We 
can say that the actual support AS(H) of a subspace cluster H 
can be explained by a set of subspace clusters P, if AS(H) is 
consistent with the assumption that the data was generated 
by only the subspace clusters in P and background noise. 
 
More formally, if we have a set P = {P1…. PK }of sub space 
clusters that should explain all subspace clusters in R, we 
assume that the overall distribution is a distribution mixture 
of K + 1 components, K components corresponding to 
(derived from) the K elements in P and the K + 1 component 
corresponding to background noise, i.e., 
 

                        (5) 
 
Where µk are the parameters of each component density, 
and µk are the proportions of the mixture. 
 
In the following, we show how to define the Explain 
relationship assuming that all component densities are 
Uniform distributions. Let the K + 1 component is the 
uniform background noise in the whole space, i.e. 
 

          (6) 
 
For the other components, corresponding to Pk 2 P, we 
assume that data is generated such that in sub space(Pk), 1 · 
k · K, the points are uniformly distributed in the 
corresponding intervals of Pk (and uniformly distributed in 
the whole domain in the remaining attributes, since these are 
the irrelevant attributes for Pk). 
 

       (7) 
 
To determine whether the existence of a subspace cluster H 
= IH …… IH mH is consistent with such a model, we have 
to estimate the possible contribution of each component 
density to H. For a component density fk, that contribution is 
proportional to the volume of the intersection between fk and 
H in the subspace of H, i.e., we have to determine the part of 
fk that lies in H. 
 

                               (8) 
 
Because fk is a uniform distribution, the number of points in 
H(Pk) generated by fk follows a Binomial distribution. 
 

                (9) 

Say that a set of subspace clusters P, plus background noise, 
explains a subspace cluster H if the observed number of 
points in H is consistent with this assumption and not 
significantly larger or smaller than expected. From the 
Binomial distributions, we can derive a lower and an upper 
bound on the number of points in H that could be generated 
by component density fk, without this number being 
statistically significant. 
 
Subspace clusters in P, plus background noise, i.e. 
 

                             (10) 
                             (11) 

 
If AS(H) falls into this range, we can say that AS(H) is 
consistent with P, or that P is in fact sufficient to explain the 
observed number of points in H.  

 
4.6. Redundancy Awareness 
 
The problem of representing R via a smallest (in this sense 
non-redundant) set of subspace clusters Note that the 
optimization problem has always a solution. 
 

 
Figure 1: Example data 
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We emphasize the fact that the redundancy-aware problem 
definition avoids shortcomings of existing problem 
definitions in the literature. First, our objective is formulated 
through an optimization problem, which is independent of a 
particular algorithm used to solve it. Second, our definition 
of subspace cluster is based on statistical principles; thus, we 
can trust that Popt stands out in the data in a statistical way, 
and is not simply an artifact of the method. Enumerating all 
elements in R in an exhaustive way is computationally 
infeasible for larger values of n and d. finding a smallest set 
of explaining subspace clusters by testing all possible 
subsets of R has complexity 2|R|, which is in turn 
computationally infeasible for typical sizes of R. We ran an 
exhaustive search on several small data sets where some low 
dimensional subspace clusters were embedded into higher 
dimensional spaces, similar to and including the data set 
depicted in Figure 1. The result set Popt found for these data 
sets was always containing only the embedded subspace 
clusters (i.e., we did not even have any false positives in 
these cases); In Figure 1, the two depicted 2-dimensional 
rectangles indicating the embedded subspace clusters 
represent in fact the subspace clusters found by the 
exhaustive search. 

 
5. Parallel Approximation Algorithm 
 
In order to find the solution Popt to the redundancy aware 
problem definition, we need heuristics to 1) Find a good set 
Rreduced ⊆R in which we can efficiently search for 2) a 
smallest set Psol that explains (at least) all elements in 
Rreduced. Ideally, Popt µ Rreduced. Propose parallel 
approximation algorithm that follows this schema. To 
construct a good set Reduced, it constructs subspace clusters 
by analyzing subspaces and local neighborhoods around 
individual data points Q. For this step we first suggest  a 
method for identifying and refining candidate subspaces 
based on fixed neighborhoods around Q, and second a 
method for finding a locally optimal subspace cluster in the 
neighborhood of Q, given the constructed candidate 
subspaces for Q. To solve the optimization problem on 
Rreduced heuristically, we propose a greedy strategy.  

 
5.1. Detecting Relevant Attributes 
 
For a given data point Q, we want to determine if there is a 
subspace cluster around Q. The neighborhoods we consider 
in this stage are all 2-dimensional rectangles with Q in the 
center and side length 2. 
 
We propose to rank the 2-dimensional rectangles according 
to their actual support and select, based on an analysis of this 
ranking, a set of attributes, called signaled attributes, which 
are, with high probability, relevant for one of the true 
subspace clusters around Q. 
 
When one or more true subspace clusters exist around Q, the 
actual support of the 2-dimensional projections that involve 
attributes of the true subspace clusters may not be 
statistically significant, nor higher than the support of some 
2-dimensional rectangles formed by uniformly distributed 
attributes. However, the actual support is likely to be at least 
in the higher range of possible support values under uniform 
distribution. This does not mean that the top M pairs consist 
mostly of relevant attributes, but it means that the frequency 

with which individual relevant attributes are involved in the 
top M pairs is likely to be significantly higher than the 
frequency of a randomly chosen attribute.  
 
5.2. Refining candidate subspaces 
 
Let S0 be a set of signaled attributes. We observe that if S0 
is only a subset of the relevant attributes for a true subspace 
cluster around Q, then, by considering the points in a hyper-
rectangle W of width 2 around Q in subspace S0, we capture 
a fraction of the true subspace cluster's points, which is often 
large enough to allow us to determine more of the relevant 
attributes; these are attributes where the points in 
SuppSet(W) are not uniformly distributed. Based on this 
observation, we can obtain a candidate subspace around Q 
through an iterative refinement of S0, as follows. Let S1 be 
the set of relevant attributes for W in subspace(S0). If S0 * 
S1, return the empty set. If S0 = S1, return S0. Otherwise, we 
repeat with S1, selecting the relevant attributes of W in 
subspace(S1), and so on, until no more attributes can be 
added.  

 
5.3. Detecting a locally optimal subspace cluster 
 
Let S be a candidate subspace. To determine if a subspace 
cluster around Q exists in S, we build a series of MBRs in S, 
starting from Q, and adding in each step to the current MBR 
the point that is closest to the current MBR in subspace S. 
For efficiency reasons, and because a cluster contains 
typically only a fraction of the total number of points, we 
only build 0:3 n MBRs around Q in subspace S.  Regarding 
the value for ±, there is no “best" value and to improve our 
chances of detecting a true subspace cluster, we suggest to 
use several different values. We simply try the 3 values 
0:05, 0:1, 0:15 for ±, resulting in up to three candidate 
subspaces for each point Q that we consider. 
 
To construct a set Rreduced, tries to find subspace clusters 
around data points as described. The first point to consider is 
selected randomly from the set of all points. Subsequent 
points are selected randomly from the points that do not 
belong to detected subspace clusters in previous steps. 
Building Rreduced terminates when no data point can be 
selected for further subspace cluster search. 
 
5.4. Greedy optimization 
 
Although |Rreduced| <|R|, solving the optimization problem on 
Rreduced by testing all possible subsets is still 
computationally too expensive in general. Thus, we 
construct greedily a set Psol that explains all subspace 
clusters in Rreduced, but may not be the smallest set with this 
property. We build Psol by adding one subspace cluster at a 
time from Rreduced. At each step, let Cand be the set of 
subspace clusters in Rreduced that are not explained by the 
current Psol. Thus, subspace clusters in Cand can be used to 
extend Psol further, until Psol explains all subspace clusters 
in Rreduced. 
 
6. Experimental Evaluation 

Real Data: We test the performance of the compared 
algorithms on the following data sets from the UCI machine 
learning repository 4: Pima Indians Diabetes (768 points, 8 
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attributes, 2 classes); Liver Disorders (345 points, 6 
attributes, 2 classes); and Wisconsin Breast Cancer 
Prognostic (WPBC)(198 points, 34 attributes, 2 classes). 
 
Performance Measures: We use an F value to measure the 
clustering accuracy. We refer to implanted clusters as input 
clusters, and to found clusters as output clusters. For each 
output cluster i, we determine the input cluster ji with which 
it shares the largest number of points. The precision of 
output cluster i is defined as the number of points common 
to i and ji divided by the total number of points in i. The 
recall of output cluster i is defined as the number of points 
common to i and ji divided by the total number of points in 
ji. The F value of output cluster i is the harmonic mean of its 
precision and recall. The F value of a clustering solution is 
obtained by averaging the F values of all its output clusters. 
Similarly, we use an F value to measure the accuracy of 
found relevant attributes based on the matching between 
output and input clusters. 

 
Table 1: Number Relevant Attributes with F Value 

Algorithm/Performance F value - Cluster 
Points 

log 
(time in 

sec) ORCLUS 0.23 1 
MAFIA 0.28 4 
P3C 0.5 5 
PRIM 0.4 7 
MINECLUS 0.58 6 
PROCLUS 0.61 4 
PARALLEL 0.8 8 

 

 
Figure 2: Liver Disorders 

Parallel approximation algorithm computes subspace 
clusters that are statistically significant. The other algorithms 
sometimes compute statistically significant subspace 
clusters, other times they do not, depending on parameter 
values and on the density of the implanted clusters (denser 
clusters are easier to detect). The classes in the real data sets 
form statistically significant clusters, and these clusters stay 
statistically significant when adding uniform attributes 
 
7. Conclusion 
 
In this paper, we proposed dimensionality reduction based 
clustering methods for high dimensional data and we 
analyzed that by reducing the dimension and clustering, 
produced the best clustering. We proposed a parallel 

approximation algorithm for clustering high dimensional 
data with greedy optimization. 

 
8. Future Work 
 
In the future we will study cell-based subspace clustering 
and density-based subspace clustering. 
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