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Abstract: In this paper, we develop a new methodology for designing a lower-error and area efficient 2’s complement fixed-width 
Booth multiplier that receives two n-bit numbers and produces an n-bit product. By properly choosing the generalized index and binary 
thresholding, we derive a better error-compensation bias to reduce the truncation error. Since the proposed error compensation bias is 
realizable, constructing low-error fixed width Booth multiplier is area and time efficient for VLSI implementation. Finally, we 
successfully apply the proposed fixed-width Booth multiplier to FIR filter. The simulation results show that the performance is superior 
to by using the direct-truncation fixed-width Booth multiplier. 
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1. Introduction 

 
Booth's multiplication algorithm is an algorithm which 
multiplies two signed binary numbers in two's complement 
notation. The algorithm was invented by Andrew Donald 
Booth in 1950 while doing research on crystallography at 
Birkbeck College in Bloomsbury, London. Booth used desk 
calculators that were faster at shifting than adding and 
created the algorithm to increase their speed. Booth's 
algorithm is of interest in the study of computer 
architecture.It can be used for both signed-magnitude 
numbers as well as 2’s complement numbers with no need 
for a correction term or a correction step 
 
This technique has the advantage of reducing the number of 
partial products by one half regardless of inputs. The 
recoding is performed within two steps: encoding and 
selection. The purpose of the encoding is to scan the triplet 
of bits of the multiplier and define the operation to be 
performed on the multiplicand, as shown in fig.1. This 
method is actually an application of a sign-digit 
representation in radix-4 [1]. The Booth-MacSorley 
algorithm, usually called the Modified booth algorithm or 
simply the booth algorithm. For example, a 3-bit recording 
would require the following set of digits to be multiplied by 
the multiplicand: 0, ±1, ±2, ±3. The difficulty lies in the fact 
that ±3Y is computed by summing (or subtracting) 1 to ±2Y, 
which means that a carry propagation occurs. The delay 
caused by the carry propagation renders this scheme to be 
slower than a conventional one. Consequently, only the 2 bit 
Booth recording is used. 
 

 
Figure 1: Implementation of modified booth recording  

 
 
 
 

2. Conventional Modified Booth Multiplier 
 
Booth's algorithm examines adjacent pairs of bits of the N-
bit multiplier Y in signed two's complement representation, 
including an implicit bit below the least significant bit, ��� 
= 0. For each bit ��  for i running from 0 to N-1, the bits �� 
and ����  are considered. Where these two bits are equal, the 
product accumulator P is left unchanged. Where ��  = 0 and 
���� = 1, the multiplicand times 2i is added to P; and where 
��  = 1 and ���� = 0, the multiplicand times 2i is subtracted 
from P. The final value of P is the signed product . Encoder 
and partial product generation circuit is shown in 2(a) and 
2(b), corresponding truth table in table1. 
 
The representation of the multiplicand and product are not 
specified; typically, these are both also in two's complement 
representation, like the multiplier, but any number system 
that supports addition and subtraction will work as well. As 
stated here, the order of the steps is not determined. 
Typically, it proceeds from LSB to MSB, starting at i = 0; 
the multiplication by 2i is then typically replaced by 
incremental shifting of the P accumulator to the right 
between steps; low bits can be shifted out, and subsequent 
additions and subtractions can then be done just on the 
highest N bits of P [1]. 
 

 
Figure 2(a): Encoder for MBE scheme 
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Figure 2(b):  Decoder for MBE scheme 

 
Table 1: Truth Table for Booth Encoder 

 
 
3. Existing Method 

 
Multipliers are key components of many high performance 
systems such as FIR filters, microprocessors, digital signal 
processors, etc. A system s performance is generally 
determined by the performance of the multiplier because the 
multiplier is generally the slowest clement in the system. 
Furthermore, it is generally the most area consuming. 
Hence, optimizing the speed and area of the multiplier is a 
major design issue. However, area and speed are usually 
conflicting constraints so that improving speed results 
mostly in larger areas. In parallel multipliers, high 
performance can be achieved by using modified Booth 
encoding, which decreases the number of partial products by 
a factor of 2 through multiplier recording. 
 
Fixed word size in lossy systems that allow small accuracy 
loss to output data, can be maintained by using n×n fixed 
width multipliers which result in only n most significant 
product bits. Complexity reduction in hardware and 
significant area and power savings can be achieved by 
removing the adder cells of standard multiplier for the 
computation of the n less significant bits of 2n-bit output 
product. However, the fallout being high truncation error 
will be introduced into the system to such kind of direct-
truncated fixed-width multiplier. Variety of error 
compensation methods that add estimated compensation 
value to inputs of the reserved adder cells, which effectively 
arrests the truncation error. As it is universally known that 
error compensation value can be derived by the 
Adaptive/Constant scheme [2]. Regardless of current input 
data value influence, the Constant Scheme arrives to 
constant error compensation value and same is used to carry 
inputs of the retained adder cells while performing 

multiplication operations. Less hardware results in a 
relatively large truncation error to the Constant Scheme.  
 
Adaptive scheme has been designed such that high accuracy 
is achieved by adjusting the compensation value according 
to the input data at the cost of higher hardware complexity. 
However, most of the adaptive error compensations are 
developed only for Fixed-width array multipliers & has less 
influence on reduction of truncation error for a fixed width 
modified booth multipliers directly. Various error 
compensation approaches, have been proposed to effectively 
scale down the truncation errors of Fixed-width modified 
Booth Multiplier at the cost of hardware complexity. Simple 
error compensation circuit results in better error 
performance and area with booth encoded outputs as inputs 
to generate the error compensation value. 
 
The Modified Booth multiplier is an extension of Booth’s 
multiplier. In Modified Booth, the number of partial 
products reduced by N/2, that is half of total partial products 
as compare to simple multiplication process [3]. So, clearly 
if the number of partial products becomes reduced, the area 
of the multiplier also will reduce and automatically as the 
result of it, the speed will increased. So, this multiplier is 
more efficient and Comparison shown in table 2. 
 

Table 2: Comparison of sign-magnitude number 
multiplication with and without booth encoding 
Booth  encoding No Booth encoding 

Internal Representation: 
2’s complement (some partial 

products need to be subtracted ) 

Internal Representation: 
Sign magnitude (all the partial 

products are positive) 
Hardware for encoding and 

selection 
One row of 4:2 compressor 

Sign extension Only one XOR is used to 
compute the sign in parallel 

2 extra bits (sign extension and 
complementation) 

No extra bits 

The normalization requires some 
Leading Zero Detectors  and 

Leading One Detectors 

The normalization and even the 
rounding is easy 

The schematic and  the layout are 
not regular 

The simplicity of the schematic 
allows a highly regular layout 

1 XOR + 1 AND(encoding), 2 
XOR+1 AND (multiplexer) 

Total: 3 XOR +2 AND 

1 AND (partial product 
generation) ,3 XOR (4:2 

compressor) 
Total: 3 XOR +1 AND 

 
3.1 Modified Booth Encoder (MBE) 
 
Modified Booth encoding is most often used to avoid variable 
size partial product arrays. Before designing a MBE, the 
multiplier B has to be converted into a Radix-4 number by 
dividing them into three digits respectively according to Booth 
Encoder, Prior to convert the multiplier, a zero is appended 
into the Least Significant Bit (LSB) of the multiplier [4].  
Table 3 shows the truth table for a booth encoder with two’s, 
one’s and correction bit [4]-[6].  
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Figure 3: Grouping of bits for MBE scheme  

 
The operand that is booth encoded is called multiplier, and 
the other operand is called multiplicand.  If a 3-bit binary 
input sequence is given at the input, and perform the 
operation as mentioned in front of it [4], the partial products 
will be generated. As mentioned in fig.3, there are total 3 
combinations for generating a partial product i.e., the 
obtained partial product is dependent upon the combination 
of three binary bits of the multiplier. 
 
4. Proposed Method 
 
In Booth multiplier Multiplication operation when 
considered between multiplicand and the multiplier namely 
A & B respectively, representation of which is depicted as 
below: 
 
Let us consider the multiplication operation of two –bit 
signed numbers   � � �������� … … . ��(multiplicand) and 
� � �������� … … . ��(multiplier). The two’s complement 
representations of A and B can be expressed as follows:    

 
� � �����2��� � ∑ ��

���
��� 2�, 

� � �����2��� � � ��

���

���

2� … … … �1� 
 
Modified Booth encoding groups the multiplier bits into 
triplets, and are encoded as given in table II, then B can be 
expressed as: 
 

� � ∑ ��2��
�
���
��� =∑ ��2����� � ��� � ������2��  

�
���
��� .....(2) 

 
Where b-1 =0 and �� belongs to the set of values {-2, -1, 0, 
1, 2}. 
 
According to the Modified Booth encoding table the existing 
booth encoder and partial product generation circuit are 
shown in figure 4 (a) and figure 4 (b) respectively. 

 
With relation to negation operation, each bit of multiplicand 
A is complemented and an extra binary value „1‟ is added to 
least significant bit pertaining to next partial product row. To 
implement correction bit �� addition of, 1’is being used and 
thereby indicating the partial product row ���  as positive 
(��=0) or negative (��=1). As each partial product row is 
represented in two s complementation, the sign bit for ���  
each must be properly extended up to the �2� � 1���bit 
position. Many ways [14] are proposed to give a solution to 
eliminate the problem of sign extension bits as they affect 

the performance and power consumption of the parallel 
multiplier with large values of n. The partial product matrix 
of an 88 modified booth multiplier with sign extension 
elimination technique is illustrated in Fig 5, where in ��,� 
and �� denote the ��� product bit and the sign bit of partial 
product row ��� , respectively. 
 

Table 3: Modified booth encoding table 
Booth Encoder 

i/p 
 

�������������  
 

Operation 
 
 

Booth encoder o/p 
�� ��������  

0    0     0 
0    0    1 
0    1    0 
0    1    1 
1    0   0 
1    0   1 
1    1   0 
1     1   1 

+0 
+A 
+A 

+2A 
-2A 
-A 
-A 
-0 

0 0 0 1 0 
0 0 1 0 0 
0 0 1 0 0 
0 1 0 0 0 
1 1 0 0 1 
1 0 1 0 1 
1 0 1 0 1 
1 0 0 1 0 

 
4.1 Fixed-Width Modified Booth Multiplier 
 
In the post-truncated modified Booth multiplier (PTM) the 
with the addition of an extra „l‟(carry value by ��������) at 
the (n-1)th bit position of partial product matrix as depicted 
in Fig 6 (including‟1‟)then outputs the highly significant n 
product bits. 
 

 
Figure 4(a): Modified Booth encoder 

 

 
Figure 4(b): Partial product generation circuit 
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Figure 5: Partial product matrix of Booth multiplier  

 

 
Figure 6: Partial product matrix of PTM 

 
4.2 Multiplier in Fir Filter 
 
As the complexity of digital filters is dominated by the 
number of multiplications, many works have focused on 
minimizing the complexity of multiplier blocks that compute 
the constant coefficient multiplications required in filters. 
The problem of designing FIR filters has received great 
attention during the last decade, as the filters are suffering 
from a large number of multiplications, leading to excessive 
area and power consumption even if implemented in full 
custom integrated circuits [8]. Early works have focused on 
replacing multiplications by decomposing them into simple 
operations such as addition, subtraction and shifting shown 
in Fig.7. 
 

 
Figure 7: Multiplier In Fir Filter 

 
As the coefficients of an application specific filter are 
constant, the decomposition is more efficient than 
employing multipliers. The complexity of FIR filters in this 
case is dominated by the number of additions/subtractions 
used to implement the coefficient multiplications. 
 
 

5. Results and Observations 
     

 
Figure 8: Conventional P-T booth 

 

 
Figure 9: Modified booth multiplier 

 

 
Figure 10: Multiplier with FIR 

 
6. Conclusion  
 
In this paper, we present a 8-bit×8bit advanced multiplier 
capable of carrying out both signed and unsigned operations. 
The proposed unified signed/unsigned multiplier was 
optimized in terms of speed, power consumption and silicon 
area by exploiting more regular partial product array, 
developing more efficient compression methods and 
combining several types of fast adders. Booth multiplier in 
FIR gives efficient results than FIR filter using array 
multiplier 
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