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Abstract: Data Mining is the extraction of hidden predictive information from large databases. Clustering is one of the popular data 
mining techniques. Clustering on uncertain data, one of the essential tasks in mining uncertain data, posts significant challenges on 
both modeling similarity between uncertain objects and developing efficient computational methods. The previous methods extend 
traditional partitioning clustering methods. Such methods cannot handle uncertain objects that are geometrically indistinguishable,
such as products with the same mean but very different variances in customer ratings. Surprisingly, probability distributions, which are 
essential characteristics of uncertain objects, have not been considered in measuring similarity between uncertain objects. In Existing
method to use the well-known Kullback-Leibler divergence to measure similarity between uncertain objects in both the continuous and 
discrete cases, and integrate it into partitioning and density-based clustering methods to cluster uncertain objects. It is very costly or 
even infeasible. The proposed work introduces the well-known Kernel skew divergence to measure similarity between uncertain objects 
in both the continuous and discrete cases. Measuring the cluster similarity with Poisson distribution is a discrete probability distribution 
that expresses the probability of a given number of events occurring in a fixed interval of time and/or space and to further speed up the 
computation.
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1. Introduction 
 
Data mining is the process of extracting or mining 
knowledge from large amount of data. Data mining tools and 
techniques helps to predict business trends those can occur in 
near future such as Clustering, Classification, Association 
rule, Decision trees. As an important research direction in 
the field of data mining, clustering has drawn more and more 
attention to researchers in the data mining. Clustering is the 
task of discovering groups and structures in the data that are 
in some way or another "similar", without using known 
structures in the data. Clustering on uncertain data, one of 
the essential tasks in mining uncertain data, posts significant 
challenges on both modeling similarity between uncertain 
objects and developing efficient computational methods. It 
used to place data elements into related groups without 
advance knowledge of the group definitions.. 
 
1.1 Data Mining 
 
Data mining is concerned with the nontrivial extraction of 
implicit, previously unknown, and potentially useful 
information from data (Frawley, Piatesky-Shapiro, and 
Matheus 1991). It is one of the steps in the process of 
knowledge discovery in databases(KDD) (Fayyad 1996; 
Fayyed, Piatetsky-Shapiro, and Smyth 1996a, 1996b, 
1996c). And for this reason, data mining has been used 
interchangeably with KDD by many database researchers 
(Agrawal et al.1996: Han et al: 1996; Imielinski and Virmani 
1995; Silberschatz, Stonebraker, and Ullman 1991,1996). 
 
 

1.1.1 Foundation of Data Mining 
 
Data mining techniques are the result of a long process of 
research and product development. This evolution began 
when business data was first stored on computers, continued 
with improvements in data access, and more recently, 
generated technologies that allow users to navigate through 
their data in real time. Data mining takes this evolutionary 
process beyond retrospective data access and navigation to 
prospective and proactive information delivery. Data mining 
is ready for application in the business community because it 
is supported by three technologies that are now sufficiently 
mature: 
 Massive data collection 
 Powerful multiprocessor computer 
 Data mining algorithms 
 
The core components of data mining technology have been 
under development for decades, in research areas such as 
statistics, artificial intelligence, and machine learning. 
Today, the maturity of these techniques, coupled with high-
performance relational database engines and broad 
integration efforts, make these technologies practical for 
current data warehouse environments. 
 
1.1.2 Challenges in Data Mining 
 
In four annual surveys of data miners, data mining 
practitioners consistently identify three key challenges that 
they face more than any others, specifically. 
 
 Dirty data 
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 Explaining data mining to others, and 
 Unavailability of data/ difficult access to data 

 
1.2 Cluster Analysis and Clustering 
 
Cluster analysis or clustering is the task of grouping a set of 
objects in such a way that objects in the same group (called 
cluster) are more similar (in some sense or another) to each 
other than to those in other groups (clusters). It is a main task 
of exploratory data mining, and a common technique for 
statistical data analysis used in many fields, including 
machine learning, pattern recognition, image analysis, 
information retrieval, and bioinformatics. 
 
Cluster analysis itself is not one specific algorithm, but the 
general task to be solved. It can be achieved by various 
algorithms that differ significantly in their notion of what 
constitutes a cluster and how to efficiently find them. 
Popular notions of clusters include groups with small 
distances among the cluster members, dense areas of the data 
space, intervals or particular statistical distributions. 
Clustering can therefore be formulated as a multi-objective 
optimization problem. The appropriate clustering algorithm 
and parameter settings (including values such as the distance 
function to use, a density threshold or the number of 
expected clusters) depend on the individual data set and 
intended use of the results.  
 
Cluster analysis as such is not an automatic task, but an 
iterative process of knowledge discovery or interactive 
multi-objective optimization that involves trial and failure. It 
will often be necessary to modify data preprocessing and 
model parameters until the result achieves the desired 
properties. The notion of a "cluster" cannot be precisely 
defined, which is one of the reasons why there are so many 
clustering algorithms. There of course is a common 
denominator: a group of data objects. However, different 
researchers employ different cluster models, and for each of 
these cluster models again different algorithms can be given. 
The notion of a cluster, as found by different algorithms, 
varies significantly in its properties.  
 
1.3 Problem Definition 
 
Clustering on uncertain data, one of the essential tasks in 
mining uncertain data, posts significant challenges on both 
modeling similarity between uncertain objects and 
developing efficient computational methods. The previous 
methods extend traditional partitioning clustering methods. 
The Kullback-Leibler divergence to measure similarity 
between uncertain objects in both the continuous and 
discrete cases, and integrate it into partitioning and density-
based clustering methods to cluster uncertain objects. 
Nevertheless, the implementation is very costly. Particularly, 
computing exact KL divergence in the continuous case is 
very costly or even infeasible. To tackle this problem, to 
estimate KL divergence in the continuous case by kernel 
density estimation and employ the fast Gauss transform 
technique. In this technique only measuring the similarity 
between the uncertain data not consider the similarity 
between the cluster it becomes the major problem in existing 
system, to overcome these problem we proposed a 
distribution similarity with Poisson distribution function 

between clusters and also improve the clustering accuracy of 
uncertain data object similarity by changing KL Divergence 
into Kernel skew divergence. 
 
1.4 Objective of the Research  
 
The main contribution of the research is to introduce a new 
Kernel Skew divergence based similarity measure used to 
measure the similarity between the uncertain data object that 
improves the clustering result. After measuring the similarity 
between the data object then find the probability result with 
Poisson distribution measure the uncertain data based on 
distribution similarity of the one clustered data to another 
clustered data.Finally cluster the uncertain data object with 
Distance-based clustering methods. 
 
1.5 Contribution of the Research  
 
The main contribution of the research is to introduce a new 
kernel skew divergence based similarity function that 
improves the clustering uncertain data object result .The key 
concept of the system is also measuring the similarity of the 
clustered data with Poisson distribution .It allow to measure 
the uncertain data based on distribution similarity of the one 
clustered data to another clustered data after the completion 
of the uncertain data object based similarity measure .It 
improves the clustering accuracy than the existing system .  
 
2. Related Work 
 
[Mihael Ankerst et al., 1999] proposed to the density-based 
clustering’s corresponding to a broad range of parameter 
settings. It is a versatile basis for both automatic and 
interactive cluster analysis. We show how to automatically 
and efficiently extract not only ‘traditional’ clustering 
information (e.g. representative points, arbitrary shaped 
clusters), but also the intrinsic clustering structure. For 
medium sized data sets, the cluster-ordering can be 
represented graphically and for very large data sets, we 
introduce an appropriate visualization technique. Both are 
suitable for interactive exploration of the intrinsic clustering 
structure offering additional insights into the distribution and 
correlation of the data. 
 
[Hans-Peter Kriegel, Martin Pfeifle., 2005] The hierarchical 
density-based clustering algorithm OPTICS has proven to 
help the user to get an overview over large data sets. When 
using OPTICS for analyzing uncertain data which naturally 
occur in many emerging application areas, e.g. location 
based services, or sensor databases, the similarity between 
uncertain objects has to be expressed by one numerical 
distance value. Based on such single-valued distance 
functions OPTICS, like other standard data mining 
algorithms, can work without any changes. In this paper, we 
propose to express the similarity between two fuzzy objects 
by distance probability functions which assign a probability 
value to each possible distance value. Contrary to the 
traditional approach, we do not extract aggregated values 
from the fuzzy distance functions but enhance OPTICS so 
that it can exploit the full information provided by these 
functions. The resulting algorithm FOPTICS helps the user 
to get an overview over a large set of fuzzy objects. 
FOPTICS algorithm basically works like the OPTICS 
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algorithm. It always takes the first element from the seed list, 
add it to the result set, and carry out a range query. 
 
[Wang Kay Ngai et al., 2006] proposed described the basic 
min-max-dist pruning method and showed that it was fairly 
effective in pruning expected distance computations. To 
further improve performance, we derived four bound-
estimation methods. We conducted extensive experimental 
study evaluating those four pruning methods. Our results 
showed that Ucs and Lcs are very effective, especially when 
they work together. In some experiment setting, UcsLcs was 
a dozen times more effective than basic min-max-dist in 
terms of pruning effectiveness. Method UpreLpre , which is 
based on precomputation of anchor points’ expected 
distances, also performed very well. The pre-computation 
overheads, however, made UpreLpre second-best to Ucs and 
Lcs . The four pruning methods are independent of each 
other and can be combined to achieve an even higher 
pruning effectiveness. Pruning is at its full-strength when all 
four are applied and if the pre-computation overhead could 
be discounted. A factor of 24 times more effective in pruning 
than min-max-dist was registered in some of the 
experiments. 
 
[Marcel R. Ackermann et al., 2008] proposed to 
understanding clustering problems with non-metric 
dissimilarity measures, like the Kullback-Leibler divergence. 
We consider a problem that is relatively well understood in 
the case of Euclidean and metric distances: k-median 
clustering. In k-median clustering we have a representative 
(sometimes called prototype) for each cluster. In the 
geometric version of the problem this is the cluster center. 
We are interested in minimizing the sum of error of the 
clustering, i.e. the error that is made by representing each 
input object by its corresponding representative. Since we 
allow non-metric dissimilarity measures, this version of k-
median also captures other variants like the well-known 
Euclidean k-means clustering, where the goal is to minimize 
the sum of squared errors (with respect to Euclidean 
distance). 
 
[Guadalupe J. Torres et al., 2008] The similarity measure 
that we proposed has experimentally demonstrated 
consistently similar results to popular measures of Euclidian 
distance (between cluster centroids) and Pearson correlation. 
The techniques can be extended to various real-world 
problems such as classification and clustering of malware, 
email analysis (finding social graph among the users based 
on email contents, for instance) in digital forensics. Since 
unsupervised clustering algorithms do not giveaccuracy; the 
proposed algorithm can be applied to find the best clustering 
algorithm for many real-life applications where clustering 
techniques are applied. The approach should enable users to 
experimentally compare various clustering algorithms and 
choose the one that best serves the problem. 
 
[Thierry Denoeux, 2013] The proposed formalism combines 
aleatory uncertainty captured by a parametric statistical 
model with epistemic uncertainty induced by an imperfect 
observation process and represented by belief functions. Our 
method then seeks the value of the unknown parameter that 
maximizes a generalized likelihood criterion, which can be 
interpreted as a degree of agreement between the parametric 

model and the uncertain data. This is achieved using the 
evidential EM algorithm, which is a simple extension of the 
classical EM algorithm with proved convergence properties. 
 
3. Methodology 
 
3.1 Existing Method  
 
Uncertain objects as random variables with certain 
distributions. Consider both the discrete case and the 
continuous case. In the discrete case, the domain has a finite 
number of values. In the continuous case, the domain is a 
continuous range of values, for example, the temperatures 
recorded in a weather station are continuous real numbers. 
Directly computing KL divergence between probability 
distributions can be very costly or even infeasible if the 
distributions are complex. Although KL divergence is 
meaningful, a significant challenge of clustering using KL 
divergence is how to evaluate KL divergence efficiently on 
many uncertain objects. First to study clustering uncertain 
data objects using KL divergence in a general setting, to 
make several contributions. After that develop a general 
framework of clustering uncertain objects considering the 
distribution as the first class citizen in both discrete and 
continuous cases. Uncertain objects can have any discrete or 
continuous distribution.  
 
It shows that distribution differences cannot be captured by 
the previous methods based on geometric distances. KL 
divergence to measure the similarity between distributions, 
and demonstrate the effectiveness of KL divergence in both 
partitioning and density-based clustering methods. To tackle 
the challenge of evaluating the KL divergence in the 
continuous case, estimate KL divergence by kernel density 
estimation and apply the fast Gauss transform to boost the 
computation. 

 
3.1.1 Kullback-Leibler Divergence based similarity 
measure  
 
It is natural to quantify the similarity between two uncertain 
objects by KL divergence. Given two uncertain objects P 
and Q and their corresponding probability distributions, 
D(P||Q) evaluates the relative uncertainty of Q given the 
distribution of P. which is the expected log-likelihood ratio 
of the two distributions and tells how similar they are. The 
KL divergence is always nonnegative, and satisfies Gibbs’ 
inequality, Kullback–Leibler divergence is a non-symmetric 
measure of the difference between two probability 
distributions P and Q. Specifically, the Kullback–Leibler 
divergence of Q from P, denoted DKL(P||Q), is a measure of 
the information lost when Q is used to approximate P: KL 
measures the expected number of extra bits required to code 
samples from P when using a code based on Q, rather than 
using a code based on P. Typically P represents the "true" 
distribution of data, observations, or a precisely calculated 
theoretical distribution. The measure Q typically represents a 
theory, model, description, or approximation of P. 
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In the discrete case, it is straightforward to evaluate to 
calculate the KL divergence between two uncertain objects P 
and Q from their probability mass functions. 
 
In the continuous case, given the samples of P and Q, by the 
law of large numbers we have, 
 

 
 

 
3.1.2 Clustering methods  
Geometric distance-based clustering methods for uncertain 
data mainly fall into two categories, partitioning and density-
based approaches present the clustering methods using KL 
divergence to cluster uncertain objects in these two 
categories. In present the uncertain k-medoids method which 
extends a popular partitioning clustering method k-medoids 
[19] by using KL divergence. Develop a randomized k-
medoids method based on the uncertain k-medoids method 
to reduce the time complexity. Presents the uncertain 
DBSCAN method which integrates KL divergence into the 
framework of a typical density-based clustering method 
DBSCAN the algorithms of the methods and how they use 
KL divergence as the similarity measure. 
 
3.1.3 K-medoids used in research  
K-means method represents each cluster by the mean of all 
objects in this cluster, while the k-medoids method uses an 
actual object in a cluster as its representative. In the context 
of uncertain data where objects are probability distributions, 
it is inefficient to compute the mean of probability density 
functions. K-medoids method avoids computing the means. 
For the sake of efficiency, we adopt the k-medoids method 
to demonstrate the performance of partitioning clustering 
methods using KL divergence to cluster uncertain objects. 
The uncertain k-medoids method consists of two phases, the 
building phase and the swapping phase.  
 
3.1.4 The algorithm can be performed in two ways 
In the building phase, the uncertain k-medoids method 
obtains an initial clustering by selecting k representatives 
one after another. The first representative C1 is the one 
which has the smallest sum of the KL divergence to all other 
objects in O. 

 
 where P is the probability distribution ,  is the remaning 
data object that not belong to the objects in the P. 

 is smaller than the divergence between  and 
any previously selected representatives P. 
 In the swapping phase, the uncertain k-medoids method 
iteratively improves the clustering by swapping a 
nonrepresentative object with the representation to which it 
is assigned. For a nonrepresentative object P, suppose it is 
assigned to cluster CC whose representative is C. 
Reassignment happens, the decrease of the total KL 
divergence by swapping P and C is recorded. After all 
nonrepresentative objects are examined; we obtain the total 
decrease of swapping P and C. Then, we select the object 
Pmax which can make the largest decrease. 

 
 

Maximum number of the object in the dataset are selected 
based on the data objects that belongs to the decrease the 
probability (P) is denoted as DEC(P). 
 
3.1.5 Partition based clustering  
DBSCAN requires two parameters: (eps) and the minimum 
number of points required to form a cluster (minPts). It starts 
with an arbitrary starting point that has not been visited. This 
point's -neighborhood is retrieved, and if it contains 
sufficiently many points, a cluster is started. Otherwise, the 
point is labeled as noise. Note that this point might later be 
found in a sufficiently sized -environment of a different 
point and hence be made part of a cluster. If a point is found 
to be a dense part of a cluster, its -neighborhood is also 
part of that cluster. Hence, all points that are found within 
the -neighborhood are added, as is their own -
neighborhood when they are also dense. This process 
continues until the density-connected cluster is completely 
found. Then, a new unvisited point is retrieved and 
processed, leading to the discovery of a further cluster or 
noise. 
 
3.1.6 DBSCAN in research  
Unlike partitioning methods which organize similar objects 
into the same partitions to discover clusters, density-based 
clustering methods regard clusters as dense regions of 
objects that are separated by regions of low density. 
DBSCAN is the first and most representative density-based 
clustering method developed for certain data. To 
demonstrate density-based clustering methods based on 
distribution similarity, we develop the uncertain DBSCAN 
method which integrates KL divergence into DBSCAN. 
 
DBSCAN method transforms objects into a different space 
where the distribution differences are revealed. The 
uncertain DBSCAN method finds dense regions through 
core objects whose " neighborhood contains at least 
objects. Formally, P is a core object, if  
 

  
 
The uncertain k-medoids method, the randomized k-medoids 
method, and the uncertain DBSCAN method all require 
evaluation of KL divergences of many pairs of objects. As 
the number of uncertain objects and the sample size of each 
object increase, it is costly to evaluate a large amount of KL 
divergence expressions. Continuous case, the complexity of 
calculating the probability density functions is quadratic to 
the sample size of the uncertain object. Precomputation is 
not feasible since the domain is unaccountably infinite. No 
matter we evaluate KL divergences directly or evaluate the 
divergence differences the major cost is on evaluating the 
following expression: 

 
Improved fast Gauss transform to reduce the constant factor 
to asymptotically polynomial order. They adopt their 
improved Gauss transform to boost the efficiency of 
evaluating. 
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Step 1: Approximate the sample of C by clustering. Partition 
the N sample points of C into k clusters S1; . . . ; Sk using the 
farthest point clustering algorithm. 
 
Step 2: Choose parameter p for truncating Taylor expansion. 
Choose p sufficiently large such that the error estimate is less 
than the precision P. Here, the error at any point of P is 
bounded 

 
Step 3: Compute the coefficients of the Taylor expansion. 
For each cluster Si (1  i k), let ci denote the center found 

by the farthest point clustering algorithm, compute the 
coefficients below 

 
Step 4: Compute the sum of approximated Gaussian 
functions. For each point s  P, find the clusters whose 

centers lie within the range h . Then, the sum of Gaussian 

functions is evaluated  

as, 

From this entire algorithm get the clustering results. 
 
3.2 Proposed Method 
 
KL divergence is a standard and well motivated 
distributional distance measure and α’s role appears to be 
simply to guarantee that the skew divergence is always 
defined, two natural questions arise. First, does increasing α, 
thereby bringing the skew divergence closer to the KL 
divergence, always yield better results. The asymmetric skew 
divergence, on the other hand, simply smoothes one of the 
distributions by mixing it, to a degree determined by the 
parameter α, with the other distribution. Varying the value of 
α changed the performance of the skew divergence for both 
of our training sets. Performance curves are preserved across 
training sets, with the error rates rising and the minima 
shifting to the right for sparse. Again, the skew divergences 
as a family are also less affected by frequency filtering than 
the baseline, back-off.  
 
3.2.1 Kernel Skew divergence and Poisson distribution  
The highest value yielded the best performance and very 
small values resulted in the worst error rates, as one might 
expect; but the relationship between error rate and α for 
intermediate settings is not so simple. The skew divergence 
is essentially the relative entropy but with ‘skewed’ second 
argument. That is, the second argument σ is replaced by the 
convex combination αρ+(1−α)σ, where α is a scalar (0 < α < 
1) which we call the skewing parameter to measure the 
uncertain data similarity . As one of its basic properties we 
will show that S(ρ||αρ+(1−α)σ) is no longer infinite but is 
bounded above by −log α, and we define the skew 
divergence as the skewed relative entropy divided by this 
factor −log α: 
 
 
 

Skew divergence is defined as  

SDα(ρ||σ) := 

Skew divergence is defined as  

S(ρ||αρ + (1 − α)σ). 

Improve the result of the similarity need some changes in the 
divergence based similarity function with skew, then add 
kernel entropy function that are most similar uncertain data 
objects are found in the dataset for clustering the data .It 
works by adding the k is a kernel if it can be interpreted as a 
scalar product on some other space. If we 

substitute  in the skew divergence function. 

 Now the skew divergence with kernel is changed as, the 
skew divergence as the skewed relative entropy divided by 
this factor −log α: 

 

 

 

 
 
Steps in proposed system 
 
Input : Uncertain data object O ,dataset D 
Output : Best cluster uncertain distribution similarity  
Step 1: Select uncertain data object O from the original 
dataset D 
Step 2: Calculate the similarity that the skew divergence as 
the kernel skewed  
 relative entropy divided by this factor −log α, 

 
Step 3: Find best kernel skew divergence similarity results in 
the KSD 
Step 4: After finding the Kernel skew divergence similarity 
function then performs the clustering using the clustering 
methods . 
Step 5: Improve the clustering results find the distribution 
similarity using the poisson distribution. A discrete random 
variable X is said to have a poisson distribution with 
parameter λ > 0, if for k = 0, 1, 2, .. the probability mass 
function of X is given by: 

 
Step 6: Finding the best distribution similarity improves the 
clustering results . 
 
3.2.2 Poisson distribution  
The Poisson distribution is a discrete probability distribution 
that expresses the probability of a given number of events 
occurring in a fixed interval of time and/or space if these 
events occur with a known average rate and independently 
of the time since the last event. The Poisson distribution can 
also be used for the number of events in other specified 
intervals such as distance, area or volume. The poisson 
distribution finds the uncertain data object similarity results 
from the kernel skew divergences result ,for improve the 
clustering result measure the distribution similarity that is the 
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similarity with highest probability values are considered as 
most similar data objects in the result. A discrete random 
variable X is said to have a poisson distribution with 
parameter λ > 0, if for k = 0, 1, 2, ... the probability mass 
function of X is given by: 

 
Where e is the base of the natural algorithm (e = 2.71828...) 
and K! is the factorial of the k value that is the number of 
times the data object present in most similar in the Kernel 

Skew divergence based similarity results .  when 

the number of events that is the number of times the 
similarity of uncertain data objects present in the dataset ,that 
is considered as important data for clustering the data at the 

interval that is difference one. The positive real number  is 

equal to the expected number of the uncertain data objects 
results of x and also to its variance of the cluster distribution 
is defines as,  

   
The Poisson distribution can be applied to systems with a 
large number of possible events in the uncertain data objects 
with each of which is rare in the data object .Based on these 
results finally cluster the data object using the clustering 
method in the existing work .The proposed system 
Clustering algorithm remains efficient in clustering large 
uncertain data objects and improves the accuracy of the 
system by measuring the similarity between the data objects 
and time complexity results are reduced based on the results.  
 
4. Experimental Results  
 
In this section measure the performance partitioning and 
density-based clustering methods have better clustering 
quality when using KL divergences as similarity than using 
geometric distances. Kernel Skew divergence (KSD) based 
similarity measure with distribution function. The results 
confirm that Kernel Skew divergence (KSD) based similarity 
measure with distribution function can naturally capture the 
distribution difference which geometric distance cannot 
capture. To boost the computation in the continuous case to 
battle the costly kernel density estimation, the fast Gauss 
transform can speed up the clustering a lot with an 
acceptable accuracy tradeoff. To scale on large data sets, the 
randomized k-medoids method equipped with the Gauss 
transform has linear complexity with respect to both the 
number of objects and the sample size per object. It can 
perform scalable clustering tasks on large data sets with 
moderate accuracy. 
 

 
Figure 1: Precision comparison between no. of clustering 

 
Figure 2: Recall comparison between no. of clustering 

 

 
Figure 3: Fmeasure comparison between no. of clustering 

 

 
Figure 4: Time comparison between proposed and 

existing methods 
 

5. Conclusion 
 
In this research clustering uncertain data based on the 
similarity between their distributions. Using the kernel skew 
divergence as the similarity measurement between objects in 
both the continuous and discrete cases are measured. The 
integrated KSD divergence into the partitioning and density-
based clustering methods to demonstrate the effectiveness of 
clustering results. To tackle the computational challenge in 
the continuous case, estimate KSD divergence by kernel 
density estimation and employ the Poisson distribution to 
find the probabilities of the distribution among data objects 
and then cluster the result further speed up the computation 
algorithm. Experimental results study the problems on 
uncertain data based on distribution similarity with 
clustering and it show better clustering results improves 
accuracy as well as time complexity is reduced.  
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6. Future Enhancement 
 
Each and every distribution performs entirely different from 
each other, in future work can be applying different 
distribution uncertain data based on distribution similarity 
and it can be applied to any other data set with uncertain 
data. 
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