
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

Byzantine Fault Tolerance in Large Scale Reliable
Storage System
 Dhiraj M. Bochare1, A. S. Alvi2

1M.E (I.T.) Scholar Department of Information Technology,
Prof. Ram Meghe Institute of Technology and Research Badnera, Amravati, Maharashtra, India

2HOD, Department of Information Technology,
Prof. Ram Meghe Institute of Technology and Research Badnera, Amravati, Maharashtra, India

Abstract: Byzantine-fault-tolerant replication enhances the availability and reliability of Internet services that store critical state and
preserve it despite attacks and software errors. Existing Byzantine-fault-tolerant storage systems assume a static set of replicas, and have
restrictions in how they handle reconfigurations. This paper describes a new replication algorithm with PBFT operation that are able to
tolerate Byzantine faults. Byzantine fault- tolerant algorithms will be important because malicious attacks and software errors are
increasingly common and can cause faulty nodes to exhibit illogical behavior. BFT state machine replication protocols are quite fast,
they don’t tolerate Byzantine faults very well. Byzantine faults occur as a result of software errors and malicious attacks.

Keywords: Byzantine Fault Tolerance, Distributed system, Membership Service, Replica, Liveness

1. Introduction

Byzantine fault tolerant system is having restrictions in
handling the reconfiguration and assumes only static set of
replicas. Large-scale distributed systems today must adapt
to dynamic membership, it will afford competent and
reliable service although churn and failures. These
systems typically incorporate or rely on some sort of
membership service and Byzantine fault tolerant, which
provides the application with information about the nodes
in the system. The principle of network security is to
avoid and monitor unlawful access, exploitation and
amendment of data in networking. This is achieved by a
group membership protocol which enables processes in a
distributed system. Membership protocols are a core
component of many distributed system and have proved to
be fundamental for maintaining ease of use and steadiness
in distributed applications. The replicated state machine
approach is a general method for implementing a fault-
tolerant service by replicating servers and coordinating
client interactions with server replicas [1], [2]. Distributed
system technologies have penetrated several areas related
with computer control and embedded systems.
Distribution needs to be combined with fault-tolerance
and real time in some applications. Malicious attacks and
software errors are increasingly common in today's
environment. The emergent reliance of industry and
government on online information services makes
malicious attacks more attractive and makes the
consequences of successful attacks more serious [3],[4],
[5]. Thus, the paper provides the following contributions:

 It describes the state-machine replication protocol that
correctly survives Byzantine faults in distributed
system.

 It provides the concept of a globally consistent view of
the membership service.

 It describes a number of important optimizations that
allow the algorithm to realize well so that it can be used
in authentic systems.

 It is designed to work at large scale, e.g., tens or
hundreds of thousands of servers.

 It is protected against Byzantine arbitrary faults.

2. Byzantine Fault Tolerance (BFT)

The world rapidly interconnected today. More and more
important services like business transactions are deployed
in network and available anywhere. These services are
easily reached by remote devices through the Internet and
mobile networks. These services often must access top
secret data to provide service. A traditional Byzantine
fault-tolerant (BFT) system runs different
implementations of the same service on several replicas
and ensures that correct computation is performed by
correct replicas to mask incorrect replicas. Software for
providing access anywhere services may contain bugs,
Hackers may take advantage of these bugs to interrupt
service and take confidential data. The complexity of real
world systems and application software makes it
complicated to produce bug-free implementations with
existing techniques. A promising approach is to use
redundancy to harden services against bugs. We
implement it with a group of 3fMS + 1 replica executing
the PBFT state machine replication protocol to provide
Byzantine fault tolerance for the Membership Service
(MS). These Membership Service replicas can run on
server nodes, but the size of the MS group is small and
sovereign of the system size. The MS operations are
translated to request invocations on the PBFT group.
Practical Byzantine Fault Tolerance (PBFT) describes a
new replication algorithm that tolerates Byzantine faults
and practical asynchronous environment and provides
enhanced performance. The algorithm provides safety if
all non-faulty replicas agree on the sequence numbers of
requests that entrust locally. It provides replicas must
change view if they are unable to execute a request. PBFT
is a replicated state machine protocol that tolerates up to f
Byzantine failures with 3 f +1 replicas. Table 1
summarizes the messages in PBFT [1], [8], [9].

Paper ID: 020131330 845

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

2.1 PBFT Operation

PBFT provides a way to execute operations correctly even
though up to f replicas out of 3f + 1 are faulty. It can
implement ADD and REMOVE as PBFT operations, it
will take as influence the respective certificate. These
operations update the current set of members which is the
PBFT service state maintained by the MS. Freshness
challenges can also be implemented as PBFT operations.
The MS does more than performing operations: MS is
responsible for probing servers, decides when they are
faulty, decides when to end an epoch, and propagates
information about the new configuration to all the servers
in network. This MS work must be done in a way that
prevents faulty members of the MS from causing a
malfunction, while at the same time ensuring progress.
We avoid problems due to faulty nodes by requiring that
fMS + 1 MS replicas vouch for any action that is based on
nondeterministic inputs. A replica proposes an eviction for
a server node that has missed npropose probe responses and
replicas probe autonomously. It does this by sending
eviction messages to other MS replicas, then waiting

Table 1: Summary of messages in PBFT
Message Meaning

Request A client sends the request to the leader
Pre-Prepare The leader proposes the client request
Prepare The replicas confirm the request proposed

by the leader
Commit The replicas accept the confirmed proposal
Reply The replicas sends the reply to the client
New-View The replicas enter a new view

for signed statements from at least fMS + 1 MS replicas
including itself that agree to evict that node. Other MS
replicas accept the eviction and sign a statement saying so
if their last nevict pings for that node have failed, where
nevict<npropose, because the initiation of the eviction waited a
bit longer than necessary. Most eviction proposals will
succeed if the node is really down. Once the replica has
composed the signatures, it invokes the EVICT operation,
which runs as a normal PBFT operation. This operation
has two parameters: the identifier of the node being
evicted and a vector containing fMS + 1 signature from MS
replicas agreeing to evict the node. The operation will fail
if there are not enough signatures and they do not verify.
We use a comparable scheme for reconnecting servers and
ending epochs. The proposer waits until other nodes are
likely to agree, collects fMS + 1 signature, and invokes the
RECONNECT or MOVEEPOCH operation, respectively.
After the MOVEEPOCH operation is executed, all MS
replicas agree on the membership in the next epoch server
nodes for which REMOVE operations have been executed
are removed and those for which ADD operations have
been executed are added. The MS replicas can produce a
certificate describing the membership changes for the new
epoch when EVICT and RECONNECT operations mark
server nodes as inactive or active [6], [8].

2.2. Algorithm

PBFT is a Byzantine fault tolerant state machine
replication protocol. It uses a primary replica to assign
each client request a sequence number in the serial order

of operations. The replicas run a three-phase agreement
protocol to reach agreement on the ordering of each
operation. After these they can implement the operation
with ensuring dependable state at all non-faulty replicas.
The state machine approach is a general method for
achievement of a fault-tolerant service by replicating
servers and coordinating client connections with server
replicas. State machines are defined by services, servers,
and most programming language structures for supporting
modularity. A state machine consists of state variables,
which encode its state, and commands, which transform
its state. Each command is implemented by a deterministic
program. Execution of the command is infinitesimal with
respect to other commands and modifies the state
variables and produces some output. A client of the state
machine makes a request to execute a command. The
request names a state machine, names the command to be
performed, and contains any information needed by the
command [10], [11].

Algorithm is a form of state machine replication. The
service is modeled as a state machine that is replicated
across different nodes in a distributed system. Each state
machine replica maintains the service state and apparatus
the service operations. The replicas move through a
succession of configurations called views. The algorithm
works roughly as follows:

1) A client sends a request to invoke a service operation
to the primary.

2) The primary multicasts the request to the backups.
3) Replicas execute the request and send a reply to the

client.
4) The client waits for 1 reply from different replicas

with the same result; this is the result of the operation.

2.2.1 The Client
Byzantine Quorum Protocol is used to handle changes in
replica set, and it provides strong semantics. Semantics
enable them to be reconfigurable while ongoing to provide
atomic semantics across changes in the replica set. It
includes protocols for read and writes operations and
dispensation of messages during replica changes. Each
object is stored at n=3f+1 node and quorums consist of
any subset containing 2f+1 node. An explanation of the
client-side read and writes protocols for two functions are
discussed below.

a) Write (data)
It sends messages to the replicas in the group that stores
and wait for valid responses, from all server in network.
Then it sends messages to all replicas and waits for
convincing reply. The write operation for a public-key
object will normally has two phases. In the read phase, a
quorum of 2f+1 replica is contacted to obtain a set of
version numbers for the object.

b) Read (data)
It sends messages to the replicas in the group that stores
and wait for convincing responses, from all server in
network. Then it sends messages to all replicas and waits
for suitable response. Then return data to the user. The
client requests the object from all replicas in the read
phase to perform a read operation. Normally, there will be

Paper ID: 020131330 846

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

2f+1 valid reply that provide the same version number
then the result is the correct response and the operation
completes. If the read occurs at the same time as with a
write, the version numbers may not agree to provide same
version number and the operation incompletes. As shown
in Fig. 1. The user get back the data from server for that
write-back operation is used, then there is a write-back
phase in which the client picks the response with the
highest version number, writes it to all replicas, and waits
for a reply from a quorum .

2.2.2 Normal-Case Operation
The state of each replica includes the state of the service, a
message log containing messages the replica has
acknowledged, and an integer denoting the replica’s
current view. The three phases are pre-prepared, prepare,
and commit as shown in Fig. 2. The pre prepare and
prepare phases are used to totally order requests sent in
the same view even when the primary. These two phases
proposes the ordering of requests is defective. The
prepared and committed phases are used to ensure that
requests that commit are totally ordered across views. In
the pre-prepare phase, the primary assigns a sequence
number to the request, multicasts a pre-prepare message
with piggybacked to all the backups, and appends the
message to its log. [4], [5].

Figure 1: System Architecture

In pre-prepare phase, it assigns sequence number n to
request. Multicast pre-prepare message with m
piggybacked to all backups and appends the message to its
log. The message has the form Message = < < pre-
prepare,v,n,d > , m > where v indicates the view in which
the message is being sent, m is the client’s request
message, and d is message m’s digest.

Figure 2: Normal-Case Operation

Replicas accept commit messages and insert them in their
log. Signatures provided by replica are same. Let We
describe committed and committed-local predicates as
follows. Committed (m,v,n) is true, if and only if prepared
(m,v,n,i) is true for all i in some set of f+1 non-faulty

replicas. Committed-local (m,v,n,i) is true if and only if
the replica has accepted 2f+1 commit message from
different replicas that match the pre-prepare for m where i
indicates replica. Replica i executes the operation
requested by m after committed local (m,v,n,i) is true and
i’s state reflects the sequential execution of all requests
with lower sequence numbers. The commit phase ensures
the following invariant. If committed-local (m,v,n,i) for
some non-faulty i then committed (m,v,n) is true. This
ensures that all non-faulty replicas execute request in
same order to provide safety property. The algorithm
provides safety if all non-flawed commit locally [2], [5],
[10].

2.2.3 View Changes
The view-change protocol provides liveness. It allows the
system to make improvement when the primary request
fails. View changes are triggered by timeouts. View
change avoids backups from waiting for an indefinite
period for requests to execute. A backup is received a
valid request and has not executed it, A backup starts a
timer when it receives a request and the timer is not
already running. It stops the timer when it is no longer
waiting to execute the request. It restarts timer if at that
point it is waiting to carry out some other request [3], [4],
[5].

3. Optimization

3.1 Reducing Communication

This describes optimizations that improve the
performance of the algorithm during normal-case
operation. All the optimizations protect the liveness and
safety properties. We use three optimizations to reduce the
cost of communication.

 The first is to avoid sending most large replies.
 The second reduces the number of message delays for

an operation incantation from 5 to 4.
 The third improves the performance of read-only

operations that do not modify the service state [5],
[10].

3.2 Cryptography

Cryptography is the study of “mathematical” systems
involving two kinds of security problems: privacy and
authentication. A Privacy system assure the sender of a
message that it is being read only by the proposed
recipient, it prevents the drawing out information by
unlawful parties from messages transmitted over a public
channel. An authentication system assures the receiver of
a message of the authenticity of its sender, prevents the
illegal inoculation of messages into a public channel.
Information security uses cryptography to renovate usable
information into a form that renders it unusable by anyone
other than an authorized user, this process is called
encryption. Information that has been encrypted that is
rendered unusable can be malformed back into its original
usable form by an authorized user, who possesses the
cryptographic key, this process is called decryption. The

Paper ID: 020131330 847

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

fundamental objective of cryptography is to enable two
people to commune over an anxious channel [6], [12]

4. Conclusion

This paper presents a complete solution for building large
scale, long lived systems that conserve Byzantine failures
by means of PBFT operations. State machine replication is
also extensively applicable because it provides strong
steadiness, which guarantees that the clients that use the
replicated service always observe the same succession of
state alter. State machine replication is the most general
approach for providing highly accessible stateful services.
This paper has described a new state-machine replication
algorithm that is able to tolerate Byzantine faults. We
have presented competent PBFT algorithms to tolerate
crash and Byzantine faults of state machines in distributed
systems with PBFT operation. In future Practical Byzantine
Fault Tolerance state replication algorithm is practical and
could be used in a real deployment, where the MS can
manage a very large number of servers.

References

[1] K.Vinothini , Ms. B. Amutha, B.Renganathan, "An
Database Query Service In Large Scale Reliable
Storage System For Automatic Reconfiguration,"
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 9,
Issue 3 (Mar. - Apr. 2013), PP 50 -53

[2] Garg, V.K., "Implementing fault-tolerant services
using fused state machines," Technical Report ECE-
PDS-2010-001, Parallel and Distributed Systems
Laboratory, ECE Dept. University of Texas at Austin
(2010)

[3] J. Cowling, D.R.K. Ports, B. Liskov, R.A. Popa, and
A. Gaikwad, “Census: Location-Aware Membership
Management for Large-Scale Distributed Systems,”
Proc. Ann. Technical Conf. (USENIX ’09), June
2009.

[4] Jos´e Rufino, Paulo Ver´ıssimo, Guilherme Arroz,
"Node Failure Detection and Membership in
CANELy" Proceedings of the 2003 International
Conference on Dependable Systems and Networks
(DSN’03)

[5] Miguel Castro and Barbara Liskov, "Practical
Byzantine Fault Tolerance," Appears in the
Proceedings of the Third Symposium on Operating
Systems Design and Implementation, New Orleans,
USA, February 1999

[6] Dr. B. G. Geetha, M.E., Ph.D, P. Senthil Raja, M.E.,
(Ph.D), R. Vijay Sai, (M.E.), "Automatic
Reconfiguration for Large-Scale trustworthy Storage
Systems," Geetha et al. / IJAIR Vol. 2 Issue 4 2013

[7] Miguel Castro, Barbara Liskov, “Practical Byzantine
Fault Tolerance and Proactive Recovery" ACM
Transactions on Computer Systems, Vol. 20, No. 4,
November 2002, Pages 398–461.

[8] Rodrigo Rodrigues, Barbara Liskov, Member, IEEE,
Kathryn Chen, Moses Liskov, and David Schultz,
"Automatic Reconfiguration for Large-Scale Reliable
Storage Systems," IEEE Transactions On Dependable
And Secure Computing, VOL. 9, NO. 2,
MARCH/APRIL 2012

[9] Mao, Yanhua, "State machine replication for wide
area networks" 2010

[10] Benjamin Wester, James Cowling, Edmund B.
Nightingale, Peter M. Chen, Jason Flinn, and Barbara
Liskov. "Tolerating latency in replicated state
machines through client speculation," In Proceedings
of the 6th USENIX symposium on Networked
systems design and implementation, pages 245–260,
Berkeley, CA, USA, 2009. USENIX Association.

[11] Fred B. Schneider, "Replication Management using
the State Machine Approach" ACM Computing
Surveys 22 (Dec. 1990).

[12] Whitfield Diffie and Martin E. Hellman, "New
Directions in Cryptography" Portions of this work
were presented at the IEEE Information Symposium
on Information Theory in Ronneby, Sweden, June 21-
24 1976

Author Profile

Mr. Dhiraj M. Bochare is Student of second year M.E.
(Information Technology) at Prof. Ram Meghe Institute of
Technology and Research Badnera, Amravati, Sant Gadge Baba
Amravati University, Amravati, Maharashtra, India

Dr. A. S. Alvi is Head of Department, Department of
Information Technology at Prof. Ram Meghe Institute of
Technology and Research Badnera, Amravati. He has completed
his PhD in CSE. - Sant Gadge Baba Amravati University,
Amravati, Maharashtra, India

Paper ID: 020131330 848

