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Abstract: Byzantine-fault-tolerant replication enhances the availability and reliability of Internet services that store critical state and 
preserve it despite attacks and software errors. Existing Byzantine-fault-tolerant storage systems assume a static set of replicas, and have 
restrictions in how they handle reconfigurations. This paper describes a new replication algorithm with PBFT operation that are able to 
tolerate Byzantine faults. Byzantine fault- tolerant algorithms will be important because malicious attacks and software errors are 
increasingly common and can cause faulty nodes to exhibit illogical behavior. BFT state machine replication protocols are quite fast, 
they don’t tolerate Byzantine faults very well. Byzantine faults occur as a result of software errors and malicious attacks.  
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1. Introduction 

Byzantine fault tolerant system is having restrictions in 
handling the reconfiguration and assumes only static set of 
replicas. Large-scale distributed systems today must adapt 
to dynamic membership, it will afford competent and 
reliable service although churn and failures. These 
systems typically incorporate or rely on some sort of 
membership service and Byzantine fault tolerant, which 
provides the application with information about the nodes 
in the system. The principle of network security is to 
avoid and monitor unlawful access, exploitation and 
amendment of data in networking. This is achieved by a 
group membership protocol which enables processes in a 
distributed system. Membership protocols are a core 
component of many distributed system and have proved to 
be fundamental for maintaining ease of use and steadiness 
in distributed applications. The replicated state machine 
approach is a general method for implementing a fault-
tolerant service by replicating servers and coordinating 
client interactions with server replicas [1], [2]. Distributed 
system technologies have penetrated several areas related 
with computer control and embedded systems. 
Distribution needs to be combined with fault-tolerance 
and real time in some applications. Malicious attacks and 
software errors are increasingly common in today's 
environment. The emergent reliance of industry and 
government on online information services makes 
malicious attacks more attractive and makes the 
consequences of successful attacks more serious [3],[4], 
[5]. Thus, the paper provides the following contributions: 

 It describes the state-machine replication protocol that 
correctly survives Byzantine faults in distributed 
system. 

 It provides the concept of a globally consistent view of 
the membership service. 

 It describes a number of important optimizations that 
allow the algorithm to realize well so that it can be used 
in authentic systems. 

 It is designed to work at large scale, e.g., tens or 
hundreds of thousands of servers.  

 It is protected against Byzantine arbitrary faults. 

2. Byzantine Fault Tolerance (BFT) 

The world rapidly interconnected today. More and more 
important services like business transactions are deployed 
in network and available anywhere. These services are 
easily reached by remote devices through the Internet and 
mobile networks. These services often must access top 
secret data to provide service. A traditional Byzantine 
fault-tolerant (BFT) system runs different 
implementations of the same service on several replicas 
and ensures that correct computation is performed by 
correct replicas to mask incorrect replicas. Software for 
providing access anywhere services may contain bugs, 
Hackers may take advantage of these bugs to interrupt 
service and take confidential data. The complexity of real 
world systems and application software makes it 
complicated to produce bug-free implementations with 
existing techniques. A promising approach is to use 
redundancy to harden services against bugs. We 
implement it with a group of 3fMS + 1 replica executing 
the PBFT state machine replication protocol to provide 
Byzantine fault tolerance for the Membership Service 
(MS). These Membership Service replicas can run on 
server nodes, but the size of the MS group is small and 
sovereign of the system size. The MS operations are 
translated to request invocations on the PBFT group. 
Practical Byzantine Fault Tolerance (PBFT) describes a 
new replication algorithm that tolerates Byzantine faults 
and practical asynchronous environment and provides 
enhanced performance. The algorithm provides safety if 
all non-faulty replicas agree on the sequence numbers of 
requests that entrust locally. It provides replicas must 
change view if they are unable to execute a request. PBFT 
is a replicated state machine protocol that tolerates up to f
Byzantine failures with 3 f +1 replicas. Table 1 
summarizes the messages in PBFT [1], [8], [9].
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2.1 PBFT Operation 

PBFT provides a way to execute operations correctly even 
though up to f replicas out of 3f + 1 are faulty. It can 
implement ADD and REMOVE as PBFT operations, it 
will take as influence the respective certificate. These 
operations update the current set of members which is the 
PBFT service state maintained by the MS. Freshness 
challenges can also be implemented as PBFT operations. 
The MS does more than performing operations: MS is 
responsible for probing servers, decides when they are 
faulty, decides when to end an epoch, and propagates 
information about the new configuration to all the servers 
in network. This MS work must be done in a way that 
prevents faulty members of the MS from causing a 
malfunction, while at the same time ensuring progress. 
We avoid problems due to faulty nodes by requiring that 
fMS + 1 MS replicas vouch for any action that is based on 
nondeterministic inputs. A replica proposes an eviction for 
a server node that has missed npropose probe responses and 
replicas probe autonomously. It does this by sending 
eviction messages to other MS replicas, then waiting  

Table 1: Summary of messages in PBFT 
Message Meaning

Request A client sends the request to the leader
Pre-Prepare The leader proposes the client request
Prepare The replicas confirm the request proposed 

by the leader
Commit The replicas accept the confirmed proposal
Reply The replicas sends the reply to the client
New-View The replicas enter a new view 

for signed statements from at least fMS + 1 MS replicas 
including itself that agree to evict that node. Other MS 
replicas accept the eviction and sign a statement saying so 
if their last nevict pings for that node have failed, where 
nevict<npropose, because the initiation of the eviction waited a 
bit longer than necessary. Most eviction proposals will 
succeed if the node is really down. Once the replica has 
composed the signatures, it invokes the EVICT operation, 
which runs as a normal PBFT operation. This operation 
has two parameters: the identifier of the node being 
evicted and a vector containing fMS + 1 signature from MS 
replicas agreeing to evict the node. The operation will fail 
if there are not enough signatures and they do not verify. 
We use a comparable scheme for reconnecting servers and 
ending epochs. The proposer waits until other nodes are 
likely to agree, collects fMS + 1 signature, and invokes the 
RECONNECT or MOVEEPOCH operation, respectively. 
After the MOVEEPOCH operation is executed, all MS 
replicas agree on the membership in the next epoch server 
nodes for which REMOVE operations have been executed 
are removed and those for which ADD operations have 
been executed are added. The MS replicas can produce a 
certificate describing the membership changes for the new 
epoch when EVICT and RECONNECT operations mark 
server nodes as inactive or active [6], [8].

2.2. Algorithm 

PBFT is a Byzantine fault tolerant state machine 
replication protocol. It uses a primary replica to assign 
each client request a sequence number in the serial order 

of operations. The replicas run a three-phase agreement 
protocol to reach agreement on the ordering of each 
operation. After these they can implement the operation 
with ensuring dependable state at all non-faulty replicas. 
The state machine approach is a general method for 
achievement of a fault-tolerant service by replicating 
servers and coordinating client connections with server 
replicas. State machines are defined by services, servers, 
and most programming language structures for supporting 
modularity. A state machine consists of state variables, 
which encode its state, and commands, which transform 
its state. Each command is implemented by a deterministic 
program. Execution of the command is infinitesimal with 
respect to other commands and modifies the state 
variables and produces some output. A client of the state 
machine makes a request to execute a command. The 
request names a state machine, names the command to be 
performed, and contains any information needed by the 
command [10], [11]. 

Algorithm is a form of state machine replication. The 
service is modeled as a state machine that is replicated 
across different nodes in a distributed system. Each state 
machine replica maintains the service state and apparatus 
the service operations. The replicas move through a 
succession of configurations called views. The algorithm 
works roughly as follows: 

1) A client sends a request to invoke a service operation 
to the primary. 

2) The primary multicasts the request to the backups. 
3) Replicas execute the request and send a reply to the 

client. 
4) The client waits for 1 reply from different replicas 

with the same result; this is the result of the operation. 

2.2.1 The Client 
Byzantine Quorum Protocol is used to handle changes in 
replica set, and it provides strong semantics. Semantics 
enable them to be reconfigurable while ongoing to provide 
atomic semantics across changes in the replica set. It 
includes protocols for read and writes operations and 
dispensation of messages during replica changes. Each 
object is stored at n=3f+1 node and quorums consist of 
any subset containing 2f+1 node. An explanation of the 
client-side read and writes protocols for two functions are 
discussed below. 

a) Write (data) 
It sends messages to the replicas in the group that stores 
and wait for valid responses, from all server in network. 
Then it sends messages to all replicas and waits for 
convincing reply. The write operation for a public-key 
object will normally has two phases. In the read phase, a 
quorum of 2f+1 replica is contacted to obtain a set of 
version numbers for the object.  

b) Read (data) 
It sends messages to the replicas in the group that stores 
and wait for convincing responses, from all server in 
network. Then it sends messages to all replicas and waits 
for suitable response. Then return data to the user. The 
client requests the object from all replicas in the read 
phase to perform a read operation. Normally, there will be 
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2f+1 valid reply that provide the same version number 
then the result is the correct response and the operation 
completes. If the read occurs at the same time as with a 
write, the version numbers may not agree to provide same 
version number and the operation incompletes. As shown 
in Fig. 1. The user get back the data from server for that 
write-back operation is used, then there is a write-back 
phase in which the client picks the response with the 
highest version number, writes it to all replicas, and waits 
for a reply from a quorum . 

2.2.2 Normal-Case Operation 
The state of each replica includes the state of the service, a 
message log containing messages the replica has 
acknowledged, and an integer denoting the replica’s 
current view. The three phases are pre-prepared, prepare, 
and commit as shown in Fig. 2. The pre prepare and 
prepare phases are used to totally order requests sent in 
the same view even when the primary. These two phases 
proposes the ordering of requests is defective. The 
prepared and committed phases are used to ensure that 
requests that commit are totally ordered across views. In 
the pre-prepare phase, the primary assigns a sequence 
number to the request, multicasts a pre-prepare message 
with piggybacked to all the backups, and appends the 
message to its log. [4], [5]. 

Figure 1: System Architecture 

In pre-prepare phase, it assigns sequence number n to 
request. Multicast pre-prepare message with m 
piggybacked to all backups and appends the message to its 
log. The message has the form Message = < < pre-
prepare,v,n,d > , m > where v indicates the view in which 
the message is being sent, m is the client’s request 
message, and d is message m’s digest. 

Figure 2: Normal-Case Operation 

Replicas accept commit messages and insert them in their 
log. Signatures provided by replica are same. Let We 
describe committed and committed-local predicates as 
follows. Committed (m,v,n) is true, if and only if prepared 
(m,v,n,i) is true for all i in some set of f+1 non-faulty 

replicas. Committed-local (m,v,n,i) is true if and only if 
the replica has accepted 2f+1 commit message from 
different replicas that match the pre-prepare for m where i 
indicates replica. Replica i executes the operation 
requested by m after committed local (m,v,n,i) is true and 
i’s state reflects the sequential execution of all requests 
with lower sequence numbers. The commit phase ensures 
the following invariant. If committed-local ( m,v,n,i) for 
some non-faulty i then committed (m,v,n) is true. This 
ensures that all non-faulty replicas execute request in 
same order to provide safety property. The algorithm 
provides safety if all non-flawed commit locally [2], [5], 
[10]. 

2.2.3 View Changes 
The view-change protocol provides liveness. It allows the 
system to make improvement when the primary request 
fails. View changes are triggered by timeouts. View 
change avoids backups from waiting for an indefinite 
period for requests to execute. A backup is received a 
valid request and has not executed it, A backup starts a 
timer when it receives a request and the timer is not 
already running. It stops the timer when it is no longer 
waiting to execute the request. It restarts timer if at that 
point it is waiting to carry out some other request [3], [4], 
[5]. 

3. Optimization 

3.1 Reducing Communication 

This describes optimizations that improve the 
performance of the algorithm during normal-case 
operation. All the optimizations protect the liveness and 
safety properties. We use three optimizations to reduce the 
cost of communication.  

 The first is to avoid sending most large replies. 
 The second reduces the number of message delays for 

an operation incantation from 5 to 4. 
 The third improves the performance of read-only 

operations that do not modify the service state [5], 
[10].

3.2 Cryptography 

Cryptography is the study of “mathematical” systems 
involving two kinds of security problems: privacy and 
authentication. A Privacy system assure the sender of a 
message that it is being read only by the proposed 
recipient, it prevents the drawing out information by 
unlawful parties from messages transmitted over a public 
channel. An authentication system assures the receiver of 
a message of the authenticity of its sender, prevents the 
illegal inoculation of messages into a public channel. 
Information security uses cryptography to renovate usable 
information into a form that renders it unusable by anyone 
other than an authorized user, this process is called 
encryption. Information that has been encrypted that is 
rendered unusable can be malformed back into its original 
usable form by an authorized user, who possesses the 
cryptographic key, this process is called decryption. The 

Paper ID: 020131330 847



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Volume 3 Issue 3, March 2014 
www.ijsr.net

fundamental objective of cryptography is to enable two 
people to commune over an anxious channel [6], [12] 

4. Conclusion

This paper presents a complete solution for building large 
scale, long lived systems that conserve Byzantine failures 
by means of PBFT operations. State machine replication is 
also extensively applicable because it provides strong 
steadiness, which guarantees that the clients that use the 
replicated service always observe the same succession of 
state alter. State machine replication is the most general 
approach for providing highly accessible stateful services. 
This paper has described a new state-machine replication 
algorithm that is able to tolerate Byzantine faults. We 
have presented competent PBFT algorithms to tolerate 
crash and Byzantine faults of state machines in distributed 
systems with PBFT operation. In future Practical Byzantine 
Fault Tolerance state replication algorithm is practical and 
could be used in a real deployment, where the MS can 
manage a very large number of servers. 
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