Proper Limit Rule

Kanay Barik¹, Asha Rani Paul²

¹M.Sc., B.Ed., Research Scholar, Kolhaan University, Jamshedpur, Jharkhand (India)
²M.Sc Scholar, Kolhaan University, Jamshedpur, Jharkhand (India)

Abstract: We can check the correctness of formula by using Dimensional Analysis. In physics, there are many types of energies, forces etc., which are dimensionally same but we cannot equate them. For example:- Mass energy relation cannot be equated with non relativistic kinetic and potential energy of a body, electrostatic force of repulsion between two protons cannot be equated with Gravitational force of attraction between them, but they are dimensionally same. Whether two equations of same dimension can be equated or not, can be check by proper limit rule.

Keywords: Equation, integration, differentiation, limits, dimensions.

1. Introduction

1.1 Proper limit rule

Whether two equation of same dimension can be equated or not can be check by Proper Limit Rule. Two equations of same dimension can only be equated if the variables of left hand side depend upon the variables of right hand side, directly or indirectly. Since integration is the reverse process of differentiation. After integration and differentiation, if the left hand side of equated equation will equal to right hand side of equated equation, then only we can equate the relation of same dimension.

Steps
Step 1- At first we have to assume that, two equation of same dimension can be equated.
Step 2- Then we have to differentiate the left and right hand side of the equated equation.
Step 3- Then we have to integrate the left and right hand side of the equated equation within proper limit.
Step 4- After differentiation and integration, if the left hand side of equated equation will equal to right hand side of equated equation, then only we can equate the relation of same dimension otherwise not.

2. Examples of Proper limit rule

Example 1. Whether kinetic energy can be equated with Electrostatic potential energy?
Let us check using proper limit rule
Step1. Let us consider \(\frac{1}{2}mv^2 = qV \)
Step2. Differentiating the variables
\(\frac{1}{2}mdv = qdV \)
Step3. Integrating within proper limit
\(m\int_0^Vdv = q\int_0^VdV \)
When \(V = 0, v = 0 \)
Or \(\frac{1}{2}mv^2 = qV \)
So they can be equated.

Example 2. Whether \(\frac{1}{2}mv^2 \) can be equated with \(\frac{1}{2}mv^2 \)?
Let us check using proper limit rule,
Step1. Let us assumed \(\frac{1}{2}mv^2 = \frac{1}{2}mv^2 \)
Step2. Differentiating the variables
\(\frac{1}{2}mdv = \frac{1}{2}mdv \)
Step3. Integrating within proper limit
\(\frac{1}{2}m\int_0^Vdv = \frac{1}{2}m\int_0^Vdv \)
So they can be equated.

Example 3. Whether \(E = msT \) can be equated with \(E = mgh \)?
Let us check using proper limit rule
Step1. Let us consider \(msT = mgh \)
Step2. Differentiating the variables
\(msdT = mgdh \)
Since there is no relation between Temperature and height, so we cannot equate them.

Example 4. Whether \(E = msT \) can be equated with \(E = mgh \)?
Let us check using proper limit rule
Step1. Let us consider \(msT = mgh \)
Step2. Differentiating the variables
\(msdT = mgdh \)
Since there is no relation between Temperature and height, so we cannot equate them.

Example 5. Whether kinetic energy can be equated with potential energy?
Let us check using proper limit rule.
Step1. Let us assumed that kinetic energy can be equated with potential energy
\(\frac{1}{2}mv^2 = mgh \)
Step2. Differentiating the variables,
\(\frac{1}{2}mdv = mgdh \)
Step3. Integrating within proper limit
\(\frac{1}{2}m\int_0^Vdv = mg\int_0^h dh \)
\[\frac{1}{2} mv^2 = -mgh \]
So they are inversely proportional to each other.

Example 6. Whether Heat energy can be equated with Einstein’s mass energy relation?
Let us check using proper limit rule
Step1. Let us consider \(msT = mc^2 \)
Step2. Differentiating the variables

\[
\text{smdT} = c^2 \, dm \\
\frac{\text{smdT}}{c} = c^2 \, dm
\]
Step3. Integrating within proper limit

\[
\text{sm} \int dT = c^2 \int dm
\]
Since there is no relation between relativistic mass and Temperature, so we cannot equate them.

Example 7. Whether \(mc^2 \) can be equated with \(\frac{1}{2} mv^2 \)?
Let us check within proper limit rule
Step1. Let us consider \(mc^2 = \frac{1}{2} mv^2 \)
Step2. Differentiating the variables
In the above relation, in left hand side mass is variable and speed of light is constant but in the right hand side mass is constant and velocity is variable. So we cannot equate them.

Example 8. Whether \(E = hv \) can be equated with \(E = mc^2 \) for photon?
Let us check using proper limit rule.
For Photon
Step1. Let us assumed that, \(hv = mc^2 \)
Step2. Now we have to differentiate the variables

\[
hdv = c^2 \, dm
\]
Step3. Then we have to integrate the above equation within proper limit

\[
h \int_0^{\phi} dv = c^2 \int_0^{\phi} dm
\]
Since photon does not exist at rest but in motion its frequency is \(v \) and mass becomes \(m \).

\[
h(v - 0) = c^2(m - 0) \\
hv = mc^2
\]
So our assumption was right. So \(hv \) can be equated with \(mc^2 \) in case of photon.

Example 9. Whether \(E = hv \) can be equated with \(E = mc^2 \) for electron?
Let us check using proper limit rule
For Electron
Step1. Let us assumed that, \(hv = mc^2 \)
Step2. Now we have to differentiate the variables

\[
hdv = c^2 \, dm
\]
Step3. Then we have to integrate the above equation within proper limit

\[
h \int_0^{\phi} dv = c^2 \int_{m_0}^{m} dm
\]
When the velocity of particle is zero, then according to de-Broglie’s hypothesis, wavelength will be infinite; frequency is zero and mass is \(m_0 \). It should be noted that for equivalence we can write the frequency of electron at rest as \(\nu_0 \), this does not mean that electron wave at rest vibrate with frequency \(\nu_0 \), if this is true then at rest it must has wavelength, which is not possible because wave is only associated with motion. When the velocity of particle is \(v \), and then its frequency may be \(v \) and mass becomes \(m \).

\[
h(v - 0) = c^2(m - m_0) \\
hv = \Delta mc^2
\]
So for electron, we cannot equate \(hv = mc^2 \), as the rest mass of electron is not zero. Further we cannot use this equation to proof de-Broglie hypothesis.

Example 10. Whether \(\lambda = 2dsin\theta \) can be equated
\[
\lambda = \frac{h}{mv} = \frac{h}{(2mE_k)^2}
\]
Let us check using proper limit rule
Step1. Let us assumed that \(2dsin\theta = \frac{h}{(2mE_k)^2} \)

\[
\frac{h^2}{2mE_k} = 4d^2 \sin^2\theta
\]
Or \(E_k = \frac{h^2}{8md^2 \sin^2\theta} \)
Since \(m, h \) & \(d \) are constant. So from above relation we can say that K.E is inversely proportional to \(\sin^2\theta \). But there is no relation between \(\theta \) and K.E of electron, K.E depends on scattering angle \(\phi \) relative to incident beam which is 50° in a particular case of Davisson- Germer Experiment when the kinetic energy was 54eV. Again the energy of electron increases when it enters a crystal by an amount equal to work function of the surface. Hence the electron speeds will increases inside the crystal and its wavelength becomes shorter. Another complication arises from interference between waves diffracted by different families of Bragg planes.

So we cannot equate \(2dsin\theta \) with \(\frac{h}{mv} \). In particular case they may be same, but not always.

3. Conclusion
Two equations of same dimension cannot be equated always.

4. Scope
This rule can guide us to equate the equations of same dimensions.

Reference
[1] Louis de-Broglie- Revolution in modern physics
[4] David Bohm- The undivided universe

Author Profile
Kanay Barik has done M.Sc., B.Ed. He is a Research Scholar at Kolhan University, Kendadi, PS- Jadugora, Via – Ghatsila, Singhbhum (Jharkhand), PIN-832303
Asha Rani Paul is doing M.Sc. at Kolhan University, Kendadi, PS- Jadugora, Via – Ghatsila, Singhbhum (Jharkhand), PIN-832303