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Abstract: Entity resolution (ER) is the problem of identifying which records in a database refer to the same entity. This project 
investigates how we can maximize the progress of ER with a limited amount of work using “hints,” which give information on records
that are likely to refer to the same real-world entity. This project introduces a family of techniques for constructing hints efficiently and 
techniques for using the hints to maximize the number of matching records identified using a limited amount of work. Using real data 
sets, this project illustrates the potential gains of our pay-as-you-go approach compared to running ER without using hints.
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1. Introduction 

An ER process is often extremely expensive due to very 
large data sets and compute-intensive record comparisons. 
For example, collecting people profiles on social websites 
can yield hundreds of millions of records that need to be 
resolved. Comparing each pair of records to estimate their 
“similarity “can be expensive as many of their fields may 
need to be compared. 

2. Framework 

In this section, we define our framework for pay-as-you-go 
ER. We first define a general model for ER, and then we 
explain how pay-as-you-go fits in. 

2.1 ER Model  

An ER algorithm E takes as input a set of records R that 
describe real-world entities. The output Ear is a partition of 
the input that groups together records describing the same 
real-world entity. For example, the output F ¼ ffr1; r3g; fr2g; 
fr4; r5; r6gg indicates that records r1 and r3 represent one 
entity; r2 by itself represents a different entity, and so on. 
Since sometimes we wish to run ER on the output of a 
previous resolution, we actually define the input as a 
partition. Initially, each record is in its own partition, e.g., 
ffr1g; fr2g; fr3g; fr4g; fr5g; fr6gg. 

We denote the ER result of E on R at time t as EðRÞ½t&. In 
the above example, if E has grouped {r1} and {r3} after 5 
seconds, then EðRÞ½5& ¼ ffr1; r3g; fr2g; fr4g; fr5g; fr6gg. 
We denote the total runtime of Ear as T be; RÞ. Qualities 
metric M can be used to evaluate an ER result against the 
correct clustering of R. For example, suppose that M 
computes the fraction of clustered record pairs that are also 
clustered according to the correct ER answer. Then, if Ear ¼ 
ffr1; r2; r3g; fr4gg and the correct clustering is 
ffr1; r2g; fr3g; fr4gg; ¼ 13 . 

Most ER algorithms do their work by repeatedly comparing 
pairs of records to determine their semantic similarity or 
difference. Although ER algorithms use different strategies, 
the general principle is that if a pair of records appears 
“similar,” then they are candidates for the same output 

partition. (We use the term match to refer to a pair that is 
similar enough to go in the same output partition. Details 
will vary by algorithm.) Since there are many potential 
records pairs to compare (n_ðn_1Þ pairs for 
                                                            2 
n records), most algorithms use some type of pruning 
strategy, where many pairs are ruled out based on a very 
coarse computation. 

The most popular pruning strategy uses blocking or indexing 
[3], [4], [5], [6]. Input records are placed in blocks or 
canopies according to one or more of their fields, e.g., for 
product records, cameras are placed in one block, cell phones 
in another, and so on. Locality sensitive hashing (LSH) [6] 
can also be used to place each record in one or more blocks. 
Then, only pairs of records within the same block are 
compared. The number of record comparisons is 
substantially reduced, although of course matches may be 
missed. For instance, one store may call a camera phone a 
cell phone while another may (mistakenly) call it a camera, 
so the two records from different stores will not be matched 
up even though they represent the same product. 
Conceptually, then we can think of blocking as defining a set 
of candidate pairs that will be carefully compared. The set 
may not be materialized, i.e., may only be implicitly defined. 
For instance, the placement of records in blocks defines the 
candidate set to be all pairs of records residing within a 
single block. 

2.2 Pay-As-You-Go Model  

With the pay-as-you-go model, we conceptually order the 
candidate pairs by the likelihood of a match. Then, the ER 
algorithm performs its record comparisons considering first 
the more-likely-to-match pairs. The key of course is to 
determine the ordering of pairs very efficiently, even if the 
order is approximate. 

To illustrate, say we have placed six records into two blocks: 
the first block contains records r1, r2, and r3, while the second 
block contains r4, r5, and r6. The implicit set of candidate 
pairs is fr1 _ r2, r1 _ r3, r2 _ r3, r4 _ r5 . . .g. A traditional ER 
algorithm would then compare these pairs, probably by 
considering all pairs in the first block in some arbitrary 
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order, and then the pairs in the second block. With pay-as-
you-go, we instead first compare the most likely pair from 
either bucket, say r5 _ r6. Then we compare the next most 
likely, say r2 _ r3. However, if only one block at a time fits in 
memory, we may prefer to order each block independently. 
That is, we first compare the pairs in the first block by 
descending match likelihood, and then we do the same for 
the second block. Either way, the goal is to discover 
matching pairs faster than by considering the candidate pairs 
in an arbitrary order. The ER algorithm can then 
incrementally construct an output partition that will more 
quickly approximate the final result. (As noted earlier, not all 
ER algorithms can be changed to compute the output 
incrementally and to consider candidate pairs by increasing 
match likelihood.) 

3. Sorted List of Record Pairs 

In this section, we explore a hint that consists of a list of 
record pairs, ranked by the likelihood that the pairs match. 
We assume that the ER algorithm uses either a distance or a 
match function. The distance function dry; so quantifies the 
differences between records r and s: the smaller the distance 
the more likely it is that r and s represent the same real-world 
entity. A match function mar; so evaluates to true if it is 
deemed that r and s represent the same real-world entity. 
Note that a match function may use a distance function. For 
instance, the match function may be of the form “if dry; so < 
T and other conditions then true,” where T is a threshold. 

3.1 Use

We now discuss how an ER algorithm can use a pair-list 
hint. While the details of usage depend on the actual ER 
algorithm used, there are two general principles that can be 
employed: 
If there is flexibility on the order in which functions mar; so 
or dark; so are called, evaluate these functions first on r, s 
pairs that are higher in the pair list. This approach will 
hopefully let the algorithm identify matching pairs (or pairs 
that are clustered together) earlier than if pairs are evaluated 
in random order. Do not call the d or m functions on pairs of 
records that are low on the pair list, assuming instead that the 
pair is “far” (pick some large distance as default) or does not 
match. 

3.2 Generation

We first discuss how to generate pair-list hints using cheaper 
estimations. We then discuss a more general technique that does 
not require application estimates.

3.2.1 Using Application Estimates 
In some cases, it is possible to construct an application-
specific estimate function that is cheap to compute. For 
example, if the distance function computes the geographic 
distance between people records, we may estimate the 
distance using zip codes: if two records have the same zip 
code, we say they are close, else we say they are far. If the 
distance function computes and combines the similarity 
between many of the record’s attributes, the estimate can 
only consider the similarity of one or two attributes, perhaps 
the most significant. 

To generate the hint, we can compute ear; so for all record 

pairs, and insert each pair and its estimate into a heap data 
structure, with the pair with smallest estimate at the top. 
After we have inserted all pairs, if we want the full list we 
can remove all pairs by increasing estimate. However, if we 
only want the top estimates, we can remove entries until we 
reach a threshold distance, a limited number of pairs, or until 
the ER algorithm stops requesting pairs from the hint. 

In other cases, the estimates map into distances along a 
single dimension, in which case the amount of data in the 
heap can be reduced substantially. For example, say ear; so is 
the difference in the price attribute of records. (Say that 
records that are close in price are likely to match.) In such a 
case, we can sort the records by price. Then, for each record, 
we enter into the heap its closest neighbor on the price 
dimension (and the corresponding price difference). To get 
the smallest estimate pair, we retrieve from the heap the 
record r with the closest neighbor. We immediately look for 
r’s next closest neighbor (by consulting the sorted list) and 
reinsert r into the heap with that new estimate. The space 
requirement in this case is proportional to jar, the number of 
records. On the other hand, if we store all pairs of records in 
the heap, the space requirement is order of OðjRj2Þ. 

3.2.2 Application Estimate Not Available 
In some cases, there may be no known inexpensive application 
specific estimate function ear; so. In such scenarios, we can 
actually construct a “generic but rough” estimate based on 
sampling. This technique may not always give good results, but 
as we show in Section 7, it can yield surprisingly good estimates 
in some cases. The basic idea is to use the expensive function 
d to compute the distances for a small subset of record pairs, 
and then use the computed distances to estimate the rest of 
the distances. We do not assume the records to be in any 
space (e.g., Euclidean), so d does not have to compute an 
absolute distance. The main advantage of this sampling 
technique is its generality where we can estimate distances 
by only using the given distance function. Suppose we have 
a sample S, which is a subset of the set of records R. We 
first measure the actual distances between all the records 
within S and between records in S and records in R _ S.
Assuming that the sample size jest is significantly smaller 
than the total number of records or j, the number of real 
distances measured is much smaller than the total number of 
pair wise distances.

Figure 1: A partition hierarchy hint for resolving R 

Given a fraction of the real distances, we can estimate the 
other distances. One possible scheme captures the distance 
between two records r and s as the sum of squares of the 
difference of dark; to and dot; so for each t 2 S. formally, the 
estimate ear; so ¼ _t2Sðdðr; to _ dot; sÞÞ2. The intuition is 
that, if r and s are very close, then they will be almost the 
same distance from any sample point t. For example, if 
distance, we only need to compare the relative sizes of 
estimates of different record pairs to construct hints. The 
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estimated distances among records within S and between 
records in S and R _ S must also be computed the same way 
as above. Our techniques resemble triangulation techniques 
where a point is located by measuring angles to it from 
known reference points. 

The sample set may affect the quality of estimation. In the 
worst case, the sample can be jest duplicate records, and all 
estimates turn out to be the same for any pair of records. 
Hence, it is desirable for the sample records to be evenly 
dispersed within R as much as possible. In practice, selecting 
a small random subset of jest records works reasonably well 
(see our technical report [7]). 

4.  Hierarchy of Record Partitions 

In this section, we propose the partition hierarchy as a 
possible format for hints. A partition hierarchy gives 
information on likely matching records in the form of 
partitions with different levels of granularity where each 
partition represents a “possible world” of an ER result. The 
partition of the bottom-most level is the most fine-grained 
clustering of the input records. Higher partitions in the 
hierarchy are coarser grained with larger clusters. That is, 
instead of storing arbitrary partitions, we require the 
partitions to have an order of granularity where coarser 
partitions are higher up in the hierarchy. 

4.1 Use

Given a partition hierarchy, the next question is how an ER 
algorithm can actually exploit this information to maximize 
the ER quality with a limited amount of work. We assume 
the ER algorithm is given based on what works best for the 
application or what developers have experience with. In 
general, there are two principles that can be employed to use 
a partition hierarchy: 

 If there is flexibility on the order of which records are 
resolved, compare the records that are in the same cluster 
in the bottom-most level of the hierarchy hint. 

 If there is more time, start comparing records in the same 
cluster in higher levels of the hierarchy hint. 

Algorithm 1 shows how a partition hierarchy hint can be 
used by an ER algorithm. Given a set of records R, an ER 
algorithm E, a partition hierarchy hint H, and a work limit 
W, we intuitively resolve the records in the bottom-level 
clusters first and progressively resolve more records in 
higher level clusters in the hierarchy until there are no more 
records to resolve or the amount of work done exceeds W 
(e.g., the number of record comparisons should not exceed 1 
million). 

4.2 Generation

We propose various methods for efficiently constructing a 
partition hierarchy. In the following section, we construct 
hints based on sorted records, which are application 
estimates. In our technical report [7], we discuss how 
partition hierarchies can also be generated using hash 
functions (which are application estimates) and sampling 
(which are not application estimates). 

4.2.1 Using Sorted Records 

We explore how a partition hierarchy can be generated when 
the estimated distances between records can map into 
distances along a single dimension according to a certain 
attribute key. Algorithm 2 shows how we can construct a 
partition hierarchy hint H using different thresholds T1; . . . ; 
TL for partitioning records based on their key value 
distances. (The thresholds values are pre specified based on 
the number of levels L in H.) For example, say we have a list 
of three records [Bob; Bobby; Bobbi] (the records are 
represented and sorted by their names). Suppose that we set 
two thresholds T1 ¼ 1 and T2 ¼ 2, and use edit distance (i.e., 
the number of character inserts and deletes required to 
convert one string to another) for measuring the key distance 
between records. Algorithm 2 first reads Bob and adds it into 
a new cluster both for P1 and P2 (Step 9). Then, we read 
Bobby and compare it with the previous record Bob (Step 6). 
The edit distance between Bob and Bobby is 2. Since this 
value is larger than T1, we create a new cluster in P1 and add 
Bobby (Step 9). Since the edit distance does not exceed T2,
we add Bobby into the first cluster in P2 (Step 7). For the last 
record Bobbi, the edit distance with the previous record 
Bobby is 4, which exceeds both thresholds. As a result, a 
new cluster with Baoji is created for both P1 and P2. The 
resulting hint thus contains two partitions. 

5. Ordered List of Records 

We now propose an ordered list of records as a format for 
hints. In comparison to a partition hierarchy, a list of records 
tries to maximize the number of matching records identified 
when the list is resolved sequentially. Two significant 
advantages are that the ER algorithm itself does not have to 
change in order to exploit the information in a record list and 
that there is no required storage space for the hint. On the 
downside, finding the right ordering of records in order to 
guide the ER algorithm to find matching records as much as 
possible is a nontrivial task where the best solution depends 
on the ER algorithm itself. Moreover, it is harder to exploit a 
sorted list of records than say a sorted list of pairs. 

5.1 Use

A record list can be applied to any ER algorithm that accepts 
as input a record list. A key advantage of using record lists is 
that the ER algorithm itself does not have to change. The 
following principle can be employed to benefit from a 
record-list hint. If there is flexibility in the order of which 
records are resolved, resolve the records in the front of the 
list first. Again, our goal is to help the ER algorithm with 
hints to efficiently return an answer F 0 that has high 
precision and recall relative to the unmodified answer F. 

The exact way the record list is exploited depends on the 
given ER algorithm. For example, we consider hierarchical 
clustering based on a Boolean comparison rule [9] (called 
HCB), which can benefit from record lists. The HCB
algorithm combines matching pairs of clusters in any order 
until no clusters match with each other. The comparison of 
two clusters can be done using an arbitrary function that 
receives two clusters and returns true or false, using the 
Boolean comparison function B to compare pairs of records. 
For example, suppose we have R ¼ fr1; r2; r3g (which can 
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also be viewed as a list of three singleton clusters) and the 
comparison function B where Bðr1; r2Þ ¼ true, Bðr2; r3Þ ¼ 
true, but Bðr1; r3Þ ¼ false. Also assume that, whenever we 
compare two clusters of records, we simply compare the 
records with the smallest IDs (e.g., a record r2 has an ID of 2) 
from each cluster using B. For instance, when comparing {r1,
r2} with {r3}, we return the result of Bðr1; r3).

5.2 Generation

We propose methods for efficiently constructing a list of 
records. The following section uses a partition hierarchy for 
generation. In our technical report [7], we also discuss how 
record lists can be generated using sampling. 

5.2.1 Using Partition Hierarchies

We propose a technique for generating record lists based on 
a partition hierarchy. Assuming that an ER algorithm 
resolves records in the input list from left to right, a desirable 
feature of a record list is to order the records such that the 
ER algorithm can minimize the number of fully identified 
entities at any point of time. A fully identified entity is one 
where the ER algorithm has found all the matching records 
for that entity. For example, given a record list [r1; r2; r3]
where r1 refers to the same entity as r2, an ER algorithm fully 
identifies the entity for {r1; r2} after resolving the first two 
records and fully identifies the entity for {r3} after resolving 
the last record. Another input list could be [r3; r1; r2] where 
one entity (i.e., {r3}) is already identified after resolving the 
first record in the list. The first list is better as a record list in 
a sense that the only record match between r1 and r2 was 
found early on. The second list is worse because {r3} was 
fully identified early on, and the comparison between r1 and 
r3 was unnecessary and could have been done after matching 
r1 and r2. That is, if we are only able to do one record 
comparison, then we will find the correct answer when using 
the record list [r1; r2; r3] and not when using the list [r3; r1;
r2]. 

In general, we want to minimize the entities that are fully 
identified because they generate unnecessary comparisons 
with newer records resolved. We will later capture this idea 
by minimizing the expected number of fully identified 
entities when the record list is resolved sequentially from left 
to right. While we can use other orderings for generating a 
record list hint, our generation focuses on ER algorithms that 
follow the guideline in Section 5.1 where records in the front 
of the list are compared first. Given a partition hierarchy H 
with L levels, we assume each of the partitions P1; . . . ; PL
are equally likely to be the ER answer. That is, each partition 
has the same chance of being the correct ER result of R and 
is thus a possible world of the records resolved. Suppose that 
we resolve a subset S of R. For each partition Pj, we estimate 
the number of clusters that are fully identified 

6. Determining Which Hint To Use 

As mentioned in Section 2.2, an ER algorithm may only be 
compatible with some types of hints (or with none at all), 
depending on the data structures and processing used. In this 
section, we provide some hint selection guidelines and then 
illustrate how the guidelines apply to the ER algorithms we 
have already introduced. If the ER algorithm compares pairs 

of records, and there is an estimator function e that is 
cheaper than the distance function d, a pair-list hint may be 
useful. If there is no estimator function e, then sampling 
techniques can be used to estimate the other distances. Next, 
if the ER algorithm clusters records based on their relative 
distances, then a hierarchy hint could be useful for focusing 
on the relatively closer records first. Finally, if the ER 
algorithm performs a sequential scan of records when 
resolving them, a record list hint may help compare the 
records that are more likely to match first. 

7. Experimental Results 

In this section, we evaluate pay-as-you-go ER on real data 
sets and show how creating and using hints can improve the 
ER quality given a limit on how much work can be done. For 
our quality metric M we use recall: the fraction of discovered 
matching record pairs. We do not use precision since our 
algorithms always find correct record matches (precision is 
always 1). More experiments on cases where the precision is 
not 1 can be found in our technical report [7]. Due to space 
restrictions, we also only show in our technical report how to 
find the right number of levels in a partition hierarchy hint 
and how to find the right sample size. 

7.1 Experimental Setting

In this section, we describe the settings used for our 
experiments. Our algorithms were implemented in Java, and 
our experiments were run on a 2.4 GHz Intel(R) Core 2 
processor with 4 GB of RAM. 

7.1.1 Real Data 

The comparison shopping data set we use was provided by 
Yahoo! Shopping and contains millions of records that arrive 
on a regular basis from different online stores and must be 
resolved before they are used to answer customer queries. 
Each record contains attributes including the title, price, and 
category of an item. We experimented on a random subset of 
3,000 shopping records that had the string “iPod” in their 
titles and 2 million shopping records. When scaling ER on 2 
million shopping records (see Section 7.4), the average block 
size was 124 records while the maximum block size was 
6,082 records. Hence, the random subset of 3,000 shopping 
records can be considered as one (relatively large) block. We 
also experimented on a hotel data set provided by Yahoo! 
Travel where tens of thousands of records arrive from 
different travel sources (e.g., Orbits.-com), and must be 
resolved before they are shown to the users. We 
experimented on a random subset of 3,000 hotel records 
located in the United States. Each hotel record contains 
attributes including the name, address, city, state, zip code, 
latitude, longitude, and phone number of a hotel. Again, the 
3,000 hotel records can be considered as one block. While 
the 3K shopping and hotel data sets fit in memory, the 2 
million shopping data set did not fit in memory and had to be 
stored on disk. 

7.1.2 Hints and ER Algorithms 

For our experiments we use the three ER algorithms used to 
illustrate our hints (and summarized earlier in Fig. 4). In this 
section, we provide some implementation details for the ER 
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algorithms used. The SN algorithm uses the Boolean match 
function B for comparing two records. For shopping records, 
B compares the titles, prices, and categories. For hotel 
records, B compares the states, cities, zip codes, and the 
names of the two hotels. We generate a pair list using cheap 
distance functions or from sampling. When generating pair 
lists using cheap distance functions, we used the estimate 
function ear; so ¼ using the title (name) attributes of 
shopping (hotel) records as the sort key. Using e, we only 
computed and stored the top-(ðw _ 1Þ _ jRj _ w_ðw_1Þ ) 

     2
Closest pairs (i.e., the number of record pairs that would be 
compared by SN given the window size w) to limit the time 
and space overhead. When using sampling to generate pair 
lists, we used a sample of 10 records. The HCS algorithm 
uses the distance function D for comparing two records. For 
shopping records, D measures the Jar distance [10] between 
the titles of two records. For hotel records, D measures the 
Jar distance of the names of two records. We generate 
partition hierarchies in three ways: using sorted records, hash 
functions, and sampling. By default, we set the number of 
levels of a partition hierarchy to 5. While increasing the 
number of levels helps us find more matching records early 
on, the benefits 

7.2 Hint Benefit  

In this section, we explore the benefits of using hints by 
measuring the recall values for various ER algorithms using 
different hints. Fig. 5a shows how a pair list can help the SN 
algorithm compare the most likely matching record pairs for 
3,000 shopping records. We experimented on the SN 
algorithm using two types of hints. Recall that the SN 
algorithm first sorts the records by a certain key. In our 
implementation, we sorted the records by their titles and then 
slid a window of size 100, comparing only the record pairs 
within the same window. The first hint we used was to order 
the pairs of records according to their difference in rank 
according to the sorted list. That is, the difference in rank 
was considered the distance between two records. The 
second hint we used estimated the pair wise distance 
between the records using the sampling technique (see 
Section 3.2.2) and compared the records with the closest 
estimated distance first. In our experiments, we set the 
sample size to 10 records. (In our technical report [7], we 
show that even a sample this small produces reasonable 
results.) Notice that when using the sampling technique, the 
SN algorithm does not use a sliding window on a sorted list 
of the records, but simply compares the pairs of records as 
dictated by the pair list. 

As more records are compared using the match function B, 
the quality of SN using hints rapidly increases. For example, 
the quality of SN using a pair list generated from cheap 
distance functions achieves 0.96 recall with only 12.5 
percent of the record comparisons required when running SN 
without hints. The quality of SN using the sampling 
technique achieves 0.8 recalls with 0.78 percent of the entire 
work. While the sampling techniques give a high recall early 
on, it does not give 1.0 recall even after performing as many 
comparisons as the SN algorithm without hints. The reason is 
that there are still matching record pairs that would have 
been found by SN without hints, but are further down the 
pair list and will eventually be compared if more pairs are 

compared (recall that the SN algorithm only compares a 
small fraction of the total record pairs using a sliding 
window). As more records are compared using the match 
function B, the quality of SN using hints rapidly increases. 
For example, the quality of SN using a pair list generated 
from cheap distance functions achieves 0.96 recalls with 
only 12.5 percent of the record comparisons required when 
running SN without hints. The quality of SN using the 
sampling technique achieves 0.8 recall with 0.78 percent of 
the entire work. While the sampling techniques give a high 
recall early on, it does not give 1.0 recall even after 
performing as many comparisons as the SN algorithm 
without hints. 

5d shows how a partition hierarchy can help the HCS
algorithm to quickly identify matching records for 3,000 
shopping records. The bottom-right plot (in Fig. 5d) shows 
the progress of the original HCS algorithm where records are 
clustered only after all pairs of base records are percent of 
the comparisons HCS uses without hints. The main reason 
for the relatively low recall is that the partitions in the 
hierarchy were highly skewed where some clusters in a 
partition were very large. As a result, the partitions in the 
hierarchy were not “pinpointing” the likely matching 
records. Moreover, setting the thresholds for creating the 
partitions was not a trivial task, making this approach 
relatively difficult to use. When using a partition hierarchy 
hint generated from a sorted list we achieve 0.99 recall with 
16 percent of the total comparisons of HCS without hints. 
Finally, when using a hint generated using hash functions, 

7.3 Hint Overhead  

In this section, we explore the CPU and memory space 
overhead of using hints. We first explore the time and space 
overhead of constructing and using hints. We then show the 
tradeoffs between the overhead and benefit of using hints 
from various perspectives. 
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7.3.1 Time and Space Overhead 

The time overhead of a hint consists of the time to construct 
the hint and the time to use the hint. While we will measure 
the construction time for hints, the time overhead of using 
the hints themselves is not significant. The usage time 
overhead for accessing a pair list is a simple iteration of the 
pairs in the list.  

The usage time overhead for accessing a partition hierarchy 
is an iteration of the clusters from the “Time Overhead” 
column in Fig. 6 shows the construction time overhead for 
each type of hint in Fig. 4 (we explain the space overhead 
later). The sub column head Sho3K means 3,000 shopping 
records while the sub column head Ho3K means 3,000 hotel 
records. Each construction time overhead was produced by 
dividing the construction time of a hint by the CPU time for 
running the ER algorithm without using any hints. For 
example, the construction time for a partition hierarchy 
based on hash functions using 3,000 shopping records is 
0:0001_ the time for running the HCS algorithm without 
hints. 

7.4 Hint Overhead  

In this section, we explore the CPU and memory space 
overhead of using hints. We first explore the time and space 
overhead of constructing and using hints. We then show the 
tradeoffs between the overhead and benefit of using hints 
from various perspectives. 

8. Conclusion

We have proposed a pay-as-you-go approach for ER where 
given a limit in resources (e.g., work, runtime) we attempt to 
make the maximum progress possible. We introduce the 
novel concept of hints, which can guide an ER algorithm to 
focus on resolving the more likely matching records first. 
Our techniques are effective when there are either too many 
records to resolve within a reasonable amount of time or 
when there is a time limit (e.g., real-time systems). We 
proposed three types of hints that are compatible with 
different ER algorithms: a sorted list of record pairs, a 
hierarchy of record partitions, and an ordered list of records. 
We have also proposed various methods for ER algorithms 
to use these hints. Our experimental results evaluated the 
overhead of constructing hints as well as the runtime benefits 
for using hints. We considered a variety of ER algorithms 
and two real-world data sets. The results suggest that the 
benefits of using hints can be well worth the overhead 
required for constructing and using hints. We believe our 
work is one of the first to define pay-as-you-go ER and 
explicitly propose hints as a general technique for fast ER. 
Many interesting problems remain to be solved, including a 

more formal analysis of different types of hints and a general 
guidance for constructing and updating the “best” hint for 
any given ER algorithm. 

References 

[1] A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios, 
“Duplicate Record Detection: A Survey,” IEEE Trans. 
Knowledge Data Eng., vol. 19, no. 1, pp. 1-16, Jan. 2007.  

[2] A.K. Jain, M.N. Murty, and P.J. Flynn, “Data Clustering: 
A Review,” ACM Computing Surveys, vol. 31, no. 3, pp. 
264-323, 1999.  

[3] H.B. Newcombe and J.M. Kennedy, “Record Linkage: 
Making Maximum Use of the Discriminating Power of 
Identifying Information,” Comm. ACM, vol. 5, no. 11, 
pp. 563-566, 1962.  

[4] M.A. Herna´ndez and S.J. Stolfo, “The Merge/Purge 
Problem for Large Databases,” Proc. ACM SIGMOD 
Int’l Conf. Management of Data, pp. 127-138, 1995.  

[5] A.K. McCallum, K. Nigam, and L. Ungar, “Efficient 
Clustering of High-Dimensional Data Sets with 
Application to Reference Matching,” Proc. ACM Sixth 
SIGKDD Int’l Conf. Knowledge Discovery and Data 
Mining, pp. 169-178, 2000.  

[6] Gionis, P. Indyk, and R. Motwani, “Similarity Search in 
High Dimensions via Hashing,” Proc. 25th Int’l Conf. 
Very Large Databases (VLDB), pp. 518-529, 1999.  

[7] S.E. Whang, D. Marmaros, and H. Garcia-Molina, “Pay-
As-You-Go Entity Resolution,” technical report, Stanford 
Univ., available at http://ilpubs.stanford.edu:8090/979/, 
2012.  

[8] C.D. Manning, P. Raghavan, and H. Schu¨tze, 
Introduction to Information Retrieval. Cambridge Univ. 
Press, 2008. 

Author Profile 

Rajeshkumar S received the bachelor’s degree B.Tech 
IT from Dr. M. G. R. Educational and Research 
Institute and University during the year of 2007-2011 
And now currently doing M.E., CSE in Vels Institute 
of Science, Technology and Advanced Studies 

(VISTAS) VELS University during 2012-2014 batch. 

Paper ID: 020131118 291




