
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

Fast and Accurate Incremental Entity Relationships
Rajeshkumar S1, Geofrin Shirly S2

1School of Engineering, Department of Computer Science and Engineering,
Vels Institute of Science, Technology and Advanced Studies (VISTAS), VELS University, Chennai-600117

2Assistant Professor, School of Engineering, Department of Computer Science and Engineering,
Vels Institute of Science, Technology and Advanced Studies (VISTAS), VELS University, Chennai-600117

Abstract: Entity resolution (ER) is the problem of identifying which records in a database refer to the same entity. This project
investigates how we can maximize the progress of ER with a limited amount of work using “hints,” which give information on records
that are likely to refer to the same real-world entity. This project introduces a family of techniques for constructing hints efficiently and
techniques for using the hints to maximize the number of matching records identified using a limited amount of work. Using real data
sets, this project illustrates the potential gains of our pay-as-you-go approach compared to running ER without using hints.

Keywords: Entity resolution, data cleaning

1. Introduction

An ER process is often extremely expensive due to very
large data sets and compute-intensive record comparisons.
For example, collecting people profiles on social websites
can yield hundreds of millions of records that need to be
resolved. Comparing each pair of records to estimate their
“similarity “can be expensive as many of their fields may
need to be compared.

2. Framework

In this section, we define our framework for pay-as-you-go
ER. We first define a general model for ER, and then we
explain how pay-as-you-go fits in.

2.1 ER Model

An ER algorithm E takes as input a set of records R that
describe real-world entities. The output Ear is a partition of
the input that groups together records describing the same
real-world entity. For example, the output F ¼ ffr1; r3g; fr2g;
fr4; r5; r6gg indicates that records r1 and r3 represent one
entity; r2 by itself represents a different entity, and so on.
Since sometimes we wish to run ER on the output of a
previous resolution, we actually define the input as a
partition. Initially, each record is in its own partition, e.g.,
ffr1g; fr2g; fr3g; fr4g; fr5g; fr6gg.

We denote the ER result of E on R at time t as EðRÞ½t&. In
the above example, if E has grouped {r1} and {r3} after 5
seconds, then EðRÞ½5& ¼ ffr1; r3g; fr2g; fr4g; fr5g; fr6gg.
We denote the total runtime of Ear as T be; RÞ. Qualities
metric M can be used to evaluate an ER result against the
correct clustering of R. For example, suppose that M
computes the fraction of clustered record pairs that are also
clustered according to the correct ER answer. Then, if Ear ¼
ffr1; r2; r3g; fr4gg and the correct clustering is
ffr1; r2g; fr3g; fr4gg; ¼ 13 .

Most ER algorithms do their work by repeatedly comparing
pairs of records to determine their semantic similarity or
difference. Although ER algorithms use different strategies,
the general principle is that if a pair of records appears
“similar,” then they are candidates for the same output

partition. (We use the term match to refer to a pair that is
similar enough to go in the same output partition. Details
will vary by algorithm.) Since there are many potential
records pairs to compare (n_ðn_1Þ pairs for
 2
n records), most algorithms use some type of pruning
strategy, where many pairs are ruled out based on a very
coarse computation.

The most popular pruning strategy uses blocking or indexing
[3], [4], [5], [6]. Input records are placed in blocks or
canopies according to one or more of their fields, e.g., for
product records, cameras are placed in one block, cell phones
in another, and so on. Locality sensitive hashing (LSH) [6]
can also be used to place each record in one or more blocks.
Then, only pairs of records within the same block are
compared. The number of record comparisons is
substantially reduced, although of course matches may be
missed. For instance, one store may call a camera phone a
cell phone while another may (mistakenly) call it a camera,
so the two records from different stores will not be matched
up even though they represent the same product.
Conceptually, then we can think of blocking as defining a set
of candidate pairs that will be carefully compared. The set
may not be materialized, i.e., may only be implicitly defined.
For instance, the placement of records in blocks defines the
candidate set to be all pairs of records residing within a
single block.

2.2 Pay-As-You-Go Model

With the pay-as-you-go model, we conceptually order the
candidate pairs by the likelihood of a match. Then, the ER
algorithm performs its record comparisons considering first
the more-likely-to-match pairs. The key of course is to
determine the ordering of pairs very efficiently, even if the
order is approximate.

To illustrate, say we have placed six records into two blocks:
the first block contains records r1, r2, and r3, while the second
block contains r4, r5, and r6. The implicit set of candidate
pairs is fr1 _ r2, r1 _ r3, r2 _ r3, r4 _ r5 . . .g. A traditional ER
algorithm would then compare these pairs, probably by
considering all pairs in the first block in some arbitrary

Paper ID: 020131118 286

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

order, and then the pairs in the second block. With pay-as-
you-go, we instead first compare the most likely pair from
either bucket, say r5 _ r6. Then we compare the next most
likely, say r2 _ r3. However, if only one block at a time fits in
memory, we may prefer to order each block independently.
That is, we first compare the pairs in the first block by
descending match likelihood, and then we do the same for
the second block. Either way, the goal is to discover
matching pairs faster than by considering the candidate pairs
in an arbitrary order. The ER algorithm can then
incrementally construct an output partition that will more
quickly approximate the final result. (As noted earlier, not all
ER algorithms can be changed to compute the output
incrementally and to consider candidate pairs by increasing
match likelihood.)

3. Sorted List of Record Pairs

In this section, we explore a hint that consists of a list of
record pairs, ranked by the likelihood that the pairs match.
We assume that the ER algorithm uses either a distance or a
match function. The distance function dry; so quantifies the
differences between records r and s: the smaller the distance
the more likely it is that r and s represent the same real-world
entity. A match function mar; so evaluates to true if it is
deemed that r and s represent the same real-world entity.
Note that a match function may use a distance function. For
instance, the match function may be of the form “if dry; so <
T and other conditions then true,” where T is a threshold.

3.1 Use

We now discuss how an ER algorithm can use a pair-list
hint. While the details of usage depend on the actual ER
algorithm used, there are two general principles that can be
employed:
If there is flexibility on the order in which functions mar; so
or dark; so are called, evaluate these functions first on r, s
pairs that are higher in the pair list. This approach will
hopefully let the algorithm identify matching pairs (or pairs
that are clustered together) earlier than if pairs are evaluated
in random order. Do not call the d or m functions on pairs of
records that are low on the pair list, assuming instead that the
pair is “far” (pick some large distance as default) or does not
match.

3.2 Generation

We first discuss how to generate pair-list hints using cheaper
estimations. We then discuss a more general technique that does
not require application estimates.

3.2.1 Using Application Estimates
In some cases, it is possible to construct an application-
specific estimate function that is cheap to compute. For
example, if the distance function computes the geographic
distance between people records, we may estimate the
distance using zip codes: if two records have the same zip
code, we say they are close, else we say they are far. If the
distance function computes and combines the similarity
between many of the record’s attributes, the estimate can
only consider the similarity of one or two attributes, perhaps
the most significant.

To generate the hint, we can compute ear; so for all record

pairs, and insert each pair and its estimate into a heap data
structure, with the pair with smallest estimate at the top.
After we have inserted all pairs, if we want the full list we
can remove all pairs by increasing estimate. However, if we
only want the top estimates, we can remove entries until we
reach a threshold distance, a limited number of pairs, or until
the ER algorithm stops requesting pairs from the hint.

In other cases, the estimates map into distances along a
single dimension, in which case the amount of data in the
heap can be reduced substantially. For example, say ear; so is
the difference in the price attribute of records. (Say that
records that are close in price are likely to match.) In such a
case, we can sort the records by price. Then, for each record,
we enter into the heap its closest neighbor on the price
dimension (and the corresponding price difference). To get
the smallest estimate pair, we retrieve from the heap the
record r with the closest neighbor. We immediately look for
r’s next closest neighbor (by consulting the sorted list) and
reinsert r into the heap with that new estimate. The space
requirement in this case is proportional to jar, the number of
records. On the other hand, if we store all pairs of records in
the heap, the space requirement is order of OðjRj2Þ.

3.2.2 Application Estimate Not Available
In some cases, there may be no known inexpensive application
specific estimate function ear; so. In such scenarios, we can
actually construct a “generic but rough” estimate based on
sampling. This technique may not always give good results, but
as we show in Section 7, it can yield surprisingly good estimates
in some cases. The basic idea is to use the expensive function
d to compute the distances for a small subset of record pairs,
and then use the computed distances to estimate the rest of
the distances. We do not assume the records to be in any
space (e.g., Euclidean), so d does not have to compute an
absolute distance. The main advantage of this sampling
technique is its generality where we can estimate distances
by only using the given distance function. Suppose we have
a sample S, which is a subset of the set of records R. We
first measure the actual distances between all the records
within S and between records in S and records in R _ S.
Assuming that the sample size jest is significantly smaller
than the total number of records or j, the number of real
distances measured is much smaller than the total number of
pair wise distances.

Figure 1: A partition hierarchy hint for resolving R

Given a fraction of the real distances, we can estimate the
other distances. One possible scheme captures the distance
between two records r and s as the sum of squares of the
difference of dark; to and dot; so for each t 2 S. formally, the
estimate ear; so ¼ _t2Sðdðr; to _ dot; sÞÞ2. The intuition is
that, if r and s are very close, then they will be almost the
same distance from any sample point t. For example, if
distance, we only need to compare the relative sizes of
estimates of different record pairs to construct hints. The

Paper ID: 020131118 287

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

estimated distances among records within S and between
records in S and R _ S must also be computed the same way
as above. Our techniques resemble triangulation techniques
where a point is located by measuring angles to it from
known reference points.

The sample set may affect the quality of estimation. In the
worst case, the sample can be jest duplicate records, and all
estimates turn out to be the same for any pair of records.
Hence, it is desirable for the sample records to be evenly
dispersed within R as much as possible. In practice, selecting
a small random subset of jest records works reasonably well
(see our technical report [7]).

4. Hierarchy of Record Partitions

In this section, we propose the partition hierarchy as a
possible format for hints. A partition hierarchy gives
information on likely matching records in the form of
partitions with different levels of granularity where each
partition represents a “possible world” of an ER result. The
partition of the bottom-most level is the most fine-grained
clustering of the input records. Higher partitions in the
hierarchy are coarser grained with larger clusters. That is,
instead of storing arbitrary partitions, we require the
partitions to have an order of granularity where coarser
partitions are higher up in the hierarchy.

4.1 Use

Given a partition hierarchy, the next question is how an ER
algorithm can actually exploit this information to maximize
the ER quality with a limited amount of work. We assume
the ER algorithm is given based on what works best for the
application or what developers have experience with. In
general, there are two principles that can be employed to use
a partition hierarchy:

 If there is flexibility on the order of which records are
resolved, compare the records that are in the same cluster
in the bottom-most level of the hierarchy hint.

 If there is more time, start comparing records in the same
cluster in higher levels of the hierarchy hint.

Algorithm 1 shows how a partition hierarchy hint can be
used by an ER algorithm. Given a set of records R, an ER
algorithm E, a partition hierarchy hint H, and a work limit
W, we intuitively resolve the records in the bottom-level
clusters first and progressively resolve more records in
higher level clusters in the hierarchy until there are no more
records to resolve or the amount of work done exceeds W
(e.g., the number of record comparisons should not exceed 1
million).

4.2 Generation

We propose various methods for efficiently constructing a
partition hierarchy. In the following section, we construct
hints based on sorted records, which are application
estimates. In our technical report [7], we discuss how
partition hierarchies can also be generated using hash
functions (which are application estimates) and sampling
(which are not application estimates).

4.2.1 Using Sorted Records

We explore how a partition hierarchy can be generated when
the estimated distances between records can map into
distances along a single dimension according to a certain
attribute key. Algorithm 2 shows how we can construct a
partition hierarchy hint H using different thresholds T1; . . . ;
TL for partitioning records based on their key value
distances. (The thresholds values are pre specified based on
the number of levels L in H.) For example, say we have a list
of three records [Bob; Bobby; Bobbi] (the records are
represented and sorted by their names). Suppose that we set
two thresholds T1 ¼ 1 and T2 ¼ 2, and use edit distance (i.e.,
the number of character inserts and deletes required to
convert one string to another) for measuring the key distance
between records. Algorithm 2 first reads Bob and adds it into
a new cluster both for P1 and P2 (Step 9). Then, we read
Bobby and compare it with the previous record Bob (Step 6).
The edit distance between Bob and Bobby is 2. Since this
value is larger than T1, we create a new cluster in P1 and add
Bobby (Step 9). Since the edit distance does not exceed T2,
we add Bobby into the first cluster in P2 (Step 7). For the last
record Bobbi, the edit distance with the previous record
Bobby is 4, which exceeds both thresholds. As a result, a
new cluster with Baoji is created for both P1 and P2. The
resulting hint thus contains two partitions.

5. Ordered List of Records

We now propose an ordered list of records as a format for
hints. In comparison to a partition hierarchy, a list of records
tries to maximize the number of matching records identified
when the list is resolved sequentially. Two significant
advantages are that the ER algorithm itself does not have to
change in order to exploit the information in a record list and
that there is no required storage space for the hint. On the
downside, finding the right ordering of records in order to
guide the ER algorithm to find matching records as much as
possible is a nontrivial task where the best solution depends
on the ER algorithm itself. Moreover, it is harder to exploit a
sorted list of records than say a sorted list of pairs.

5.1 Use

A record list can be applied to any ER algorithm that accepts
as input a record list. A key advantage of using record lists is
that the ER algorithm itself does not have to change. The
following principle can be employed to benefit from a
record-list hint. If there is flexibility in the order of which
records are resolved, resolve the records in the front of the
list first. Again, our goal is to help the ER algorithm with
hints to efficiently return an answer F 0 that has high
precision and recall relative to the unmodified answer F.

The exact way the record list is exploited depends on the
given ER algorithm. For example, we consider hierarchical
clustering based on a Boolean comparison rule [9] (called
HCB), which can benefit from record lists. The HCB
algorithm combines matching pairs of clusters in any order
until no clusters match with each other. The comparison of
two clusters can be done using an arbitrary function that
receives two clusters and returns true or false, using the
Boolean comparison function B to compare pairs of records.
For example, suppose we have R ¼ fr1; r2; r3g (which can

Paper ID: 020131118 288

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

also be viewed as a list of three singleton clusters) and the
comparison function B where Bðr1; r2Þ ¼ true, Bðr2; r3Þ ¼
true, but Bðr1; r3Þ ¼ false. Also assume that, whenever we
compare two clusters of records, we simply compare the
records with the smallest IDs (e.g., a record r2 has an ID of 2)
from each cluster using B. For instance, when comparing {r1,
r2} with {r3}, we return the result of Bðr1; r3).

5.2 Generation

We propose methods for efficiently constructing a list of
records. The following section uses a partition hierarchy for
generation. In our technical report [7], we also discuss how
record lists can be generated using sampling.

5.2.1 Using Partition Hierarchies

We propose a technique for generating record lists based on
a partition hierarchy. Assuming that an ER algorithm
resolves records in the input list from left to right, a desirable
feature of a record list is to order the records such that the
ER algorithm can minimize the number of fully identified
entities at any point of time. A fully identified entity is one
where the ER algorithm has found all the matching records
for that entity. For example, given a record list [r1; r2; r3]
where r1 refers to the same entity as r2, an ER algorithm fully
identifies the entity for {r1; r2} after resolving the first two
records and fully identifies the entity for {r3} after resolving
the last record. Another input list could be [r3; r1; r2] where
one entity (i.e., {r3}) is already identified after resolving the
first record in the list. The first list is better as a record list in
a sense that the only record match between r1 and r2 was
found early on. The second list is worse because {r3} was
fully identified early on, and the comparison between r1 and
r3 was unnecessary and could have been done after matching
r1 and r2. That is, if we are only able to do one record
comparison, then we will find the correct answer when using
the record list [r1; r2; r3] and not when using the list [r3; r1;
r2].

In general, we want to minimize the entities that are fully
identified because they generate unnecessary comparisons
with newer records resolved. We will later capture this idea
by minimizing the expected number of fully identified
entities when the record list is resolved sequentially from left
to right. While we can use other orderings for generating a
record list hint, our generation focuses on ER algorithms that
follow the guideline in Section 5.1 where records in the front
of the list are compared first. Given a partition hierarchy H
with L levels, we assume each of the partitions P1; . . . ; PL
are equally likely to be the ER answer. That is, each partition
has the same chance of being the correct ER result of R and
is thus a possible world of the records resolved. Suppose that
we resolve a subset S of R. For each partition Pj, we estimate
the number of clusters that are fully identified

6. Determining Which Hint To Use

As mentioned in Section 2.2, an ER algorithm may only be
compatible with some types of hints (or with none at all),
depending on the data structures and processing used. In this
section, we provide some hint selection guidelines and then
illustrate how the guidelines apply to the ER algorithms we
have already introduced. If the ER algorithm compares pairs

of records, and there is an estimator function e that is
cheaper than the distance function d, a pair-list hint may be
useful. If there is no estimator function e, then sampling
techniques can be used to estimate the other distances. Next,
if the ER algorithm clusters records based on their relative
distances, then a hierarchy hint could be useful for focusing
on the relatively closer records first. Finally, if the ER
algorithm performs a sequential scan of records when
resolving them, a record list hint may help compare the
records that are more likely to match first.

7. Experimental Results

In this section, we evaluate pay-as-you-go ER on real data
sets and show how creating and using hints can improve the
ER quality given a limit on how much work can be done. For
our quality metric M we use recall: the fraction of discovered
matching record pairs. We do not use precision since our
algorithms always find correct record matches (precision is
always 1). More experiments on cases where the precision is
not 1 can be found in our technical report [7]. Due to space
restrictions, we also only show in our technical report how to
find the right number of levels in a partition hierarchy hint
and how to find the right sample size.

7.1 Experimental Setting

In this section, we describe the settings used for our
experiments. Our algorithms were implemented in Java, and
our experiments were run on a 2.4 GHz Intel(R) Core 2
processor with 4 GB of RAM.

7.1.1 Real Data

The comparison shopping data set we use was provided by
Yahoo! Shopping and contains millions of records that arrive
on a regular basis from different online stores and must be
resolved before they are used to answer customer queries.
Each record contains attributes including the title, price, and
category of an item. We experimented on a random subset of
3,000 shopping records that had the string “iPod” in their
titles and 2 million shopping records. When scaling ER on 2
million shopping records (see Section 7.4), the average block
size was 124 records while the maximum block size was
6,082 records. Hence, the random subset of 3,000 shopping
records can be considered as one (relatively large) block. We
also experimented on a hotel data set provided by Yahoo!
Travel where tens of thousands of records arrive from
different travel sources (e.g., Orbits.-com), and must be
resolved before they are shown to the users. We
experimented on a random subset of 3,000 hotel records
located in the United States. Each hotel record contains
attributes including the name, address, city, state, zip code,
latitude, longitude, and phone number of a hotel. Again, the
3,000 hotel records can be considered as one block. While
the 3K shopping and hotel data sets fit in memory, the 2
million shopping data set did not fit in memory and had to be
stored on disk.

7.1.2 Hints and ER Algorithms

For our experiments we use the three ER algorithms used to
illustrate our hints (and summarized earlier in Fig. 4). In this
section, we provide some implementation details for the ER

Paper ID: 020131118 289

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

algorithms used. The SN algorithm uses the Boolean match
function B for comparing two records. For shopping records,
B compares the titles, prices, and categories. For hotel
records, B compares the states, cities, zip codes, and the
names of the two hotels. We generate a pair list using cheap
distance functions or from sampling. When generating pair
lists using cheap distance functions, we used the estimate
function ear; so ¼ using the title (name) attributes of
shopping (hotel) records as the sort key. Using e, we only
computed and stored the top-(ðw _ 1Þ _ jRj _ w_ðw_1Þ)

 2
Closest pairs (i.e., the number of record pairs that would be
compared by SN given the window size w) to limit the time
and space overhead. When using sampling to generate pair
lists, we used a sample of 10 records. The HCS algorithm
uses the distance function D for comparing two records. For
shopping records, D measures the Jar distance [10] between
the titles of two records. For hotel records, D measures the
Jar distance of the names of two records. We generate
partition hierarchies in three ways: using sorted records, hash
functions, and sampling. By default, we set the number of
levels of a partition hierarchy to 5. While increasing the
number of levels helps us find more matching records early
on, the benefits

7.2 Hint Benefit

In this section, we explore the benefits of using hints by
measuring the recall values for various ER algorithms using
different hints. Fig. 5a shows how a pair list can help the SN
algorithm compare the most likely matching record pairs for
3,000 shopping records. We experimented on the SN
algorithm using two types of hints. Recall that the SN
algorithm first sorts the records by a certain key. In our
implementation, we sorted the records by their titles and then
slid a window of size 100, comparing only the record pairs
within the same window. The first hint we used was to order
the pairs of records according to their difference in rank
according to the sorted list. That is, the difference in rank
was considered the distance between two records. The
second hint we used estimated the pair wise distance
between the records using the sampling technique (see
Section 3.2.2) and compared the records with the closest
estimated distance first. In our experiments, we set the
sample size to 10 records. (In our technical report [7], we
show that even a sample this small produces reasonable
results.) Notice that when using the sampling technique, the
SN algorithm does not use a sliding window on a sorted list
of the records, but simply compares the pairs of records as
dictated by the pair list.

As more records are compared using the match function B,
the quality of SN using hints rapidly increases. For example,
the quality of SN using a pair list generated from cheap
distance functions achieves 0.96 recall with only 12.5
percent of the record comparisons required when running SN
without hints. The quality of SN using the sampling
technique achieves 0.8 recalls with 0.78 percent of the entire
work. While the sampling techniques give a high recall early
on, it does not give 1.0 recall even after performing as many
comparisons as the SN algorithm without hints. The reason is
that there are still matching record pairs that would have
been found by SN without hints, but are further down the
pair list and will eventually be compared if more pairs are

compared (recall that the SN algorithm only compares a
small fraction of the total record pairs using a sliding
window). As more records are compared using the match
function B, the quality of SN using hints rapidly increases.
For example, the quality of SN using a pair list generated
from cheap distance functions achieves 0.96 recalls with
only 12.5 percent of the record comparisons required when
running SN without hints. The quality of SN using the
sampling technique achieves 0.8 recall with 0.78 percent of
the entire work. While the sampling techniques give a high
recall early on, it does not give 1.0 recall even after
performing as many comparisons as the SN algorithm
without hints.

5d shows how a partition hierarchy can help the HCS
algorithm to quickly identify matching records for 3,000
shopping records. The bottom-right plot (in Fig. 5d) shows
the progress of the original HCS algorithm where records are
clustered only after all pairs of base records are percent of
the comparisons HCS uses without hints. The main reason
for the relatively low recall is that the partitions in the
hierarchy were highly skewed where some clusters in a
partition were very large. As a result, the partitions in the
hierarchy were not “pinpointing” the likely matching
records. Moreover, setting the thresholds for creating the
partitions was not a trivial task, making this approach
relatively difficult to use. When using a partition hierarchy
hint generated from a sorted list we achieve 0.99 recall with
16 percent of the total comparisons of HCS without hints.
Finally, when using a hint generated using hash functions,

7.3 Hint Overhead

In this section, we explore the CPU and memory space
overhead of using hints. We first explore the time and space
overhead of constructing and using hints. We then show the
tradeoffs between the overhead and benefit of using hints
from various perspectives.

Paper ID: 020131118 290

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

7.3.1 Time and Space Overhead

The time overhead of a hint consists of the time to construct
the hint and the time to use the hint. While we will measure
the construction time for hints, the time overhead of using
the hints themselves is not significant. The usage time
overhead for accessing a pair list is a simple iteration of the
pairs in the list.

The usage time overhead for accessing a partition hierarchy
is an iteration of the clusters from the “Time Overhead”
column in Fig. 6 shows the construction time overhead for
each type of hint in Fig. 4 (we explain the space overhead
later). The sub column head Sho3K means 3,000 shopping
records while the sub column head Ho3K means 3,000 hotel
records. Each construction time overhead was produced by
dividing the construction time of a hint by the CPU time for
running the ER algorithm without using any hints. For
example, the construction time for a partition hierarchy
based on hash functions using 3,000 shopping records is
0:0001_ the time for running the HCS algorithm without
hints.

7.4 Hint Overhead

In this section, we explore the CPU and memory space
overhead of using hints. We first explore the time and space
overhead of constructing and using hints. We then show the
tradeoffs between the overhead and benefit of using hints
from various perspectives.

8. Conclusion

We have proposed a pay-as-you-go approach for ER where
given a limit in resources (e.g., work, runtime) we attempt to
make the maximum progress possible. We introduce the
novel concept of hints, which can guide an ER algorithm to
focus on resolving the more likely matching records first.
Our techniques are effective when there are either too many
records to resolve within a reasonable amount of time or
when there is a time limit (e.g., real-time systems). We
proposed three types of hints that are compatible with
different ER algorithms: a sorted list of record pairs, a
hierarchy of record partitions, and an ordered list of records.
We have also proposed various methods for ER algorithms
to use these hints. Our experimental results evaluated the
overhead of constructing hints as well as the runtime benefits
for using hints. We considered a variety of ER algorithms
and two real-world data sets. The results suggest that the
benefits of using hints can be well worth the overhead
required for constructing and using hints. We believe our
work is one of the first to define pay-as-you-go ER and
explicitly propose hints as a general technique for fast ER.
Many interesting problems remain to be solved, including a

more formal analysis of different types of hints and a general
guidance for constructing and updating the “best” hint for
any given ER algorithm.

References

[1] A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios,
“Duplicate Record Detection: A Survey,” IEEE Trans.
Knowledge Data Eng., vol. 19, no. 1, pp. 1-16, Jan. 2007.

[2] A.K. Jain, M.N. Murty, and P.J. Flynn, “Data Clustering:
A Review,” ACM Computing Surveys, vol. 31, no. 3, pp.
264-323, 1999.

[3] H.B. Newcombe and J.M. Kennedy, “Record Linkage:
Making Maximum Use of the Discriminating Power of
Identifying Information,” Comm. ACM, vol. 5, no. 11,
pp. 563-566, 1962.

[4] M.A. Herna´ndez and S.J. Stolfo, “The Merge/Purge
Problem for Large Databases,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 127-138, 1995.

[5] A.K. McCallum, K. Nigam, and L. Ungar, “Efficient
Clustering of High-Dimensional Data Sets with
Application to Reference Matching,” Proc. ACM Sixth
SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining, pp. 169-178, 2000.

[6] Gionis, P. Indyk, and R. Motwani, “Similarity Search in
High Dimensions via Hashing,” Proc. 25th Int’l Conf.
Very Large Databases (VLDB), pp. 518-529, 1999.

[7] S.E. Whang, D. Marmaros, and H. Garcia-Molina, “Pay-
As-You-Go Entity Resolution,” technical report, Stanford
Univ., available at http://ilpubs.stanford.edu:8090/979/,
2012.

[8] C.D. Manning, P. Raghavan, and H. Schu¨tze,
Introduction to Information Retrieval. Cambridge Univ.
Press, 2008.

Author Profile

Rajeshkumar S received the bachelor’s degree B.Tech
IT from Dr. M. G. R. Educational and Research
Institute and University during the year of 2007-2011
And now currently doing M.E., CSE in Vels Institute
of Science, Technology and Advanced Studies

(VISTAS) VELS University during 2012-2014 batch.

Paper ID: 020131118 291

