
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

Constraint Satisfaction Problem (CSP) Based
Implementation of Scheduling Aircraft at Runway

Ranjan Kumar Thakur1, Ram Baksh2, Arabind Kumar3, Aditya Pratap Singh4

1Delhi University, Department of Mathematics, Deshbandhu College, Kalkaji, New Delhi - 110019

2Delhi University, Department of Mathematics, Dyal Singh College, Lodhi Road, New Delhi - 110003

3Delhi University, Department of Mathematics, Kamala Nehru College, August Kranti Marg, New Delhi - 110049

4Delhi University, Department of Mathematics, PGDAV College (Evening), Nehru Nagar, New Delhi - 110065

Abstract: The aim of this Paper is to implement a Constraint Satisfaction Problem (CSP) based solution for scheduling departure
sequence of Aircraft at runways. Airports are getting more and more congested as they are operating a large number of Aircrafts at
limited number of available runways. This is one of the most constraining factors encountered recently. A number of approaches are
used to tackle this situation at major Airports. A possibility to alleviate this congestion is to assist controllers in the planning and
scheduling process of aircraft. The prototype presented in this paper is aimed to offer such assistance in the establishment of an optimal
departure schedule and the planning of initial climb phases for departing aircraft. In this paper, first the operational problem of
departure management is addressed by describing briefly current practice and identifying the role of departure planning at airports.
Second, a mapping of the departure management problem to constraint satisfaction is described. Third, the prototype is described in
detail and an example solution is presented. Finally, some conclusions are drawn. C++ and Linux are used as an implementation
environment.

Keywords: CSP, Scheduling, Runway, Aircraft

1. Introduction

Controllers in airport control towers are responsible for the
overall management of surface traffic at the airport. This is a
difficult process: even under normal operating conditions at
least three different controllers (one for each of the ‘pre-
flight’, ‘taxiways’ and ‘runways’ areas) manage the aircraft
on the airport. Each controller will try to establish an optimal
plan for his/her own area and will try to provide the aircraft
to the next controller in an efficient way. Departure
management at the runways is the responsibility of the
runway controller. The prototype featured in this paper
intends to assist the runway controller in establishing
optimal departure sequences, taking the plans of other
controllers into account where necessary. The runway
controller is the last planner in line and is dependent on the
sequence of aircraft that is handed over by the previous
(taxiway) controller. At the runway, typically only minor
changes to the provided sequence can be made through the
use of runway holdings and intersection take-offs. The
current way of working leads to a sub-optimal use of the
available runway capacity, since the provided departure
sequences are for the largest part fixed. A way out to this
problem follows from the recognition that the runways are
the scarcer resource at airports. We will assume, therefore,
that the runway controller (assisted by the prototype)
determines the sequence of aircraft to obtain an optimal use
of the runway capacity at the airport.

The departure management (runway scheduling) task entails
the establishment of an optimal sequence of departing
aircraft (the schedule) and the assignment of departure plans
to these aircraft. Departure plans consist of start-up times at
the gates, taxi plans for taxiing to the runways, and runway
plans for take-off. The focus here is on the establishment of

runway plans - start-up times and taxi plans can be derived
from these plans. Runway plans specify which aircraft
should use which runway for take-off, and at what time.
Important for the establishment of runway plans is the so-
called wake vortex separation, restricting departing aircraft
at the same runway because of preceding aircraft that may be
too close. Another relevant issue concerns the timeslot
assigned to each aircraft. At most European airports,
timeslots are co-ordinated time intervals of about 15 minutes
in which aircraft should take off. Co-ordination is done with
the CFMU (Central Flow Management Unit) in before the
flight starts; the CFMU planning aims at obtaining a
constant traffic flow through all sectors. For the airport
controllers, this CFMU restriction ensures that the sectors
are not overloaded by the feeders - the points where
controllers hand over the flights to the next one.

1.2 Problem Statement

For the runway scheduling problem, one wants to find an
efficient schedule for aircraft to use the runway. The output,
then, to the runway scheduling problem is a time for each
aircraft to begin using the runway, which will be referred to
as a departure management (i.e. runway scheduling).

The runway scheduling problem is formally described as
follows:
Airports can be said to provide a variety of resources used
by all departing, arriving, and ground traffic. For the
departure management problem at hand, the existence of
runways, Standard Instrument Departure (SID) routes and
Terminal Maneuvering Area (TMA) exit points are of
specific importance. Runways connect to SID routes, which
specify the route aircraft can take in airspace above the
airport. SID routes lead to TMA exit points, marking the

Paper ID: 020131104 271

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

boundaries of the airspace around the airport (see: [1], [4]).
Figure 1.1 below schematically depicts part of the topology
of an example airport: Prague.

Figure 1.1: Schematic representation of part of Prague
airport: runways, SID routes and exit points.

Given an airport with its runways, SID routes, and exit
points, the departure management problem consists of
allocating these resources and a suitable timetable to each
flight to be scheduled. Suppose that F1, F2 ,.., Fn is the set
of flights to be scheduled. Assume, furthermore, that for
each flight Fj is given:

• The aircraft with its corresponding properties (e.g., its
speed and weight class).

• The destination point, which is the TMA exit point.
• The CFMU (Central Flow Management Unit) time

interval within which the flight needs to take-off.

Then for each flight Fj , the following will need to be
planned:

• A take-off time: the time at which the aircraft should start
its take-off roll at the runway.

• A runway, leading to the SID route.
• A total flight time, stating the time at which the aircraft

should start flying its SID route (depending on the take-off
time) and when it should complete the route.

• A SID route, leading to the TMA exit point.
• An exit time, the time at which the aircraft should pass the

TMA exit point (depending on the total flight time).

2. Design of Aircraft Scheduling using CSPs

2.1 Introduction

To solve the Aircraft Scheduling problem using constraint
satisfaction, we need to formulate it as a Constraint
satisfaction Programming (CSP) problem. A CSP-problem
can be defined as:

 A set of variables X={x1,...,xn}.
 For each variable xi, a finite set Di of possible values (its

domain).
 A set of constraints restricting the values that the variables

can simultaneously take.

2.2 Variables and Domains in Aircraft Scheduling

In order to describe the planning problem as a CSP-problem,
we need to distinguish the variables, their associated
domains and relevant constraints in the problem description.
The variables in the problem space can then be identified
with the flights that need to be scheduled. A flight will be
defined as the total path of an aircraft from the gate via take-
off to its exit point: the destination at which the aircraft
leaves the airport’s airspace. Flights are then constructed of
the following parts:

 Take-off at the runway.
 SID at the SID route.
 Exit at the exit point.

The gate itself, it should be noted, as well as the various taxi
routes an aircraft could take to reach a runway are currently
excluded from the problem space. The values to which all
constituents of flights need to be assigned fall into two
categories:

 The time point or time range, stating when a particular
part of a flight needs to start.

 The resources (runways, SID routes, exit points) needed
by that part of the flight.

2.3 Constraints in Aircraft Scheduling

Constraints in a CSP-problem restrict the combinations of
values assigned to the variables in the domain. For the
departure management problem, a number of constraints C1,
C2,…, Cm can be formulated to restrict the combinations of
assigned times and allocated resources to all parts of the
flights to be scheduled. Given its problem space, the
following types of constraints can be distinguished:

 Resource constraints, specifying which resources a flight
(each part of it) requires.

 Order constraints, restricting the time-order of the parts
constituting a flight.

 Timeslot constraints, stating that flights need to take-off
within their CFMU-timeslot.

 Separation constraints, formulating minimum separation
times between aircraft of different speed and weight class
for runways and exit points.

 Topology constraints, describing which runways connect
to which flight-routes and which exit points.

 Additional tower-control constraints, reflecting controller
decisions to let aircraft depart in a specific order or at
specific time-intervals.

Having formulated the variables, values, and constraints
relevant to the departure management problem, the task to be
accomplished now is to find an assignment of times and
allocation of resources to each sub-path of each flight, such
that none of the constraints is violated. This task can be
described as a scheduling task (being a specific CSP
problem): a process of allocating scarce resources to
activities over a period of time.

Paper ID: 020131104 272

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

3. The Scheduling Model

3.1 Flights

Every Flight is divided into three sub-paths: a take-off, flight
and exit. The Flight has been assigned its value as a
quadruplet (runway for takeoff, SID-Route for flight, Exit
point for Exit, take-off time). So domain for a Flight will be
R×S×E×T, where R is the domain for runways, S is the
domain for SID routes, E is the domain for Exit points and T
is the domain for take-off time.

If we consider Prague airport as an example (figure 1.1) then
R = {runway24, runway31, runway06}
S = {HDO8F, KADNO, HDO8G, HOLAN8F, HOLAN8A,
HOLAN8G, RAK8F, RAK8G, HOLAN8J, HDO8J}
E = {HDO, HOLAN, RAK}
T = {between allotted CFMU time slot for the given flight}.

3.2 Resource Constraint

Resource constraint specifies that which Flight require
which runway, SID route and exit point for its takeoff. A file
“resource requirement” is being updated according to the
requirements for each flight. Suppose F1 requires runways
Runway24 or Runway06, SID routes HOLAN8A or RAK
8F OR HDO, exit point HDO OR HOLAN then in the file
the information is expressed as in the table below:

Table 1: Resource Constraint
Flight

No
No of

Runways
Runways No of

Sidroutes
Sidroutes No of

Exit
Points

Exit
Point

1001 2 R24 R31 3 HOLAN8G
RAK8F
HDO

3 HDO
HOLA

N
RAK

3.3 Timeslot Constraint

Timeslot constraint specifies the CFMU-timeslot flights
need to use for its take-off. As an example, Flight number
3124 (F1) has been allotted the CFMU-timeslot as 10:15 –
10:30, then the given Flight need to takeoff between 10:15
to 10:30. To codify that flight 1 should take-off in timeslot
[1015, 1030] the prototype implements:

F1.getTakeOffTime() > = F1.getCFMUSTime() ;
F1.getTakeOffTime() < = F1.getCEMUETime() ;

Where F1.getCFMUSTime() returns 10:15 and
F1.getCFMUETime() returns 10:30.

3.4 Separation Constraint

For a given airport, certain separation rules are prescribed.
Separation settings define the minimum separation times
aircraft at the runways or exit points need to obey. Here, we
enables the user to configure separation criteria for runways
and exit points for all relevant combinations of aircraft
types.

For runways, one can set the minimum separation times for
aircraft. In our prototype, two minimum separations can be
distinguished: a large separation and a default separation.
The large separation will be observed when an aircraft
taking off after another aircraft is either in a larger speed
class or in a smaller weight class. Under these
circumstances, separation should be larger due to the
stronger impact the wake vortex (i.e., the air turbulence) of
the preceding aircraft can have on the following aircraft. For
example, when a Cessna Citation (weight class Light) or a
Fokker Friendship F27/500 (weight class Medium) takes off
after a Boeing 747-400 (weight class Heavy) on the same
runway, the large separation time needs to be observed. In
any other situation, the default separation time should be
adhered to.

This scheme is implemented by creating a transition times
table, specifying the amounts of time that must elapse
between two consecutive aircraft that takeoff. The table is
then associated with the runway resources and filled with the
minimum separation times to be observed for any two
aircraft taking off. In our solution, the function
GetTransitionTime returns the separation time between any
aircraft with speed class sp1 and weight class wt1 that takes
off before any aircraft with speed class sp2 and weight class
wt2:

Int GetTransitionTime(const SpeedClass sp1, const
SpeedClass sp2,
const WeightClass wt1, const WeighClass wt2)

{
if ((sp1 < sp2) || (wt1 > wt2))
return maxRunwaySeparation;
else

return defaultRunwaySeparation;
}

This function is called when filling the transition time table
TT with minimum separations for all combinations of speed
and weight classes:

for (SpeedClass sp1=A; sp1<=E; sp1++)
 for (WeightClass wt1=Light; wt1<=Heavy; wt1++)
 for (SpeedClass sp2=A; sp2<=E; sp2++)
 for (WeightClass wt2=Light; wt2<=Heavy; wt2=++)
 (*TT).setValue((sp1*wt1),(sp2*wt2),
 GetTransitionTime(sp1, sp2, wt1, wt2));

Thus, the transition time table is created and filled,
effectively constraining any planning solution to the
minimum separations times to be observed for aircraft taking
off. For exit points, other separation times may and typically
do apply. To separate aircraft on exit points, a minimum
separation time can be set in a fashion similar to that for
runways. In this way, it can be assured that sector via the
exit points will be sufficiently spaced in time.

3.5 Topology Constraint

In our solution, matrixes are defined to lay down the
connections between runways, SID routes, and exit points
corresponding to the airport topology used. For example, for
Prague airport constraints are defined to indicate that runway

Paper ID: 020131104 273

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

R06 connects to SID routes HDO8J, HOLAN8J, leading to
exit points HOLAN, HDO. For Prague airport topology
constraints are defined by two matrices as follows:

Table 2: Runway SID – Route Connection
 H

D
O
8
F

K
A
D
N
O

H
D
O8
G

HO
LA
N8F

HOL
AN8
A

H
O
L
A
N8
G

RA
K8F

RA
K8
G

H
O
L
A
N8
J

HD
O8J

R
u
n
w
a
y
2
4

1 1 0 1 1 0 1 0 0 0

R
u
n
w
a
y
3
1

0 0 1 0 0 1 0 1 0 0

R
u
n
w
a
y
0
6

0 0 0 0 0 0 0 0 1 1

Table 3: Exit-Point SID-Route Connection
 H

D
O
8
F

K
A
D
N
O

H
D
O8
G

HO
LA
N8F

HOL
AN8
A

H
O
L
A
N8
G

RA
K8F

RA
K8
G

H
O
L
A
N8
J

HD
O8J

H
D
O

1 1 1 0 0 0 0 0 0 1

H
O
L
A
N

0 0 0 1 1 1 0 0 1 0

R
A
K

0 0 0 0 0 0 1 1 0 0

3.6 Additional Tower Control Constraints

Additional tower-control constraints can be added to reflect
controller decisions to influence the schedule. The prototype
allows the tower-control to change the order or time interval
in which specific flights should take-off. For example, to
force flight 2 to take-off before flight 1, the prototype
implements:

F2.getTakeOffTime() < = F2.getTakeOffTime();
Similarly, to force flight 1 to take-off at t=1015 :

F1.setTakeofTime(1015);

4. Implementation

4.1 Layout

In the prototype presented here we opt C++ as the
programming environment and made a few relaxations in the
constraint area. These include inbound traffic constraint
relaxation and additional tower control constraint relaxation.
These constraints can easily be implemented with minor
changes in the presented program.

4.2 Flight

We consider Flight as an object with data Member and
member functions in the Flight class as below:

#include<iostream>
#include<string>
#include<cstring>
using namespace std;
class Flight{
 string runway;
 string sidRoute;
 string exitPoint;
 string speedClass;
 string weightClass;
 int CFMUSTime,CFMUETime;//CFMU interval
 int flightNo;
 int takeOffTime;
 public :
//-------------constructor for the class-------------------
 Flight(string sc,string wc,string exit,int cfmus,int
cfmue,int fn)
 { setSpeedClass(sc);
 setWeightClass(wc);
 setExitPoint(exit);
 setCFMUSTime(cfmus);
 setCFMUETime(cfmue);
 setFlightNo(fn); }
//-------------set and get function for takeoff time---------

 void setTakeOffTime(int n)
 { takeOffTime=n; }
 int getTakeOffTime()
 { return takeOffTime; }

//----------set and get function for flight number-----------

 int setFlightNo(int n)
 { flightNo=n; }
 int getFlightNo()
 {return flightNo;}
//----------set and get function for runway------------------

 void setRunway(string RW)
 { runway=RW; }
 string getRunway()
 {return runway;}
//------------set and get function for sid route---------------
 void setSidRoute(string s)
 {sidRoute=s;}
 string getSidRoute()
 {return sidRoute;}

Paper ID: 020131104 274

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

//---------------set and get function for exit point-----------
--
 void setExitPoint(string E)
 {exitPoint=E;}
 string getExitPoint()
 {return exitPoint;}

//----------------set and get function for speed class--------

 void setSpeedClass(string SC)
 {speedClass=SC;}
 string getSpeedClass()
 {return speedClass;}
//---------------set and get function for weight class-------

 void setWeightClass(string WC)
 {weightClass=WC;}
 string getWeightClass()
 {return weightClass;}
//----------------set and get function for CFMU start time-

 void setCFMUSTime(int ST)
 {CFMUSTime=ST;}
 int getCFMUSTime()
 {return CFMUSTime;}
//--------------------set and get function for CFMU end
time-------
 void setCFMUETime(int FT)
 {CFMUETime=FT;}
 int getCFMUETime()
 {return CFMUETime;}
//-------------------display function---------------------------

 void showData(){ cout<<"\nFlight Number :
"<<flightNo;
 cout<<"\nTakeOff runway : "<<getRunway()<<"\t\tSid
route : "<<getSidRoute()
 <<"\t\tTMA exit point : "<<getExitPoint();
 cout<<"\nSpeed Class : "<<getSpeedClass()

<<"\t\tWeight class :
"<<getWeightClass();

 cout<<"\nCFMU Strat time of flight :
"<<getCFMUSTime()

<<"\t\tCFMU End time of
flight : "<<getCFMUETime();

 cout<<"\nTakeoff time : "<<getTakeOffTime()<<endl;
}
};

4.3 Resource Constraint
To take care of the resource constraint we write a function
named ResourceConstraint() and placed it into a header file
Resource Constraint.h . This function is being called in
main() for each Flight and it will update a file RC.dat in the
follwing manner;

FlightNo No of
Runways

Runways No of
Sidroutes

Sidroutes No of
Exit

Points

Exit
Points

2134 2 runway24 runway31 3 hdo8f kadno hdo8g hdo
3124 3 runway24 runway31 runway06 3 holan8a holan8g
holan8j holan

1234 3 runway24 runway31 runway06 3 holan8f holan8g
holan8j holan
2314 2 runway24 runway31 2 rak8f rak8g rak
4321 2 runway31 runway06 2 hdo8g hdo8j hdo

To accomplish this scenario, C++ code is as
below:void ResourceConstraint()
{
 ofstream outRCFile("RC.dat",ios::out|ios::app);
 if(!outRCFile)
 { cerr<<"File could not be opened"<<endl;
 exit(1); }
 cout<<"Enter Flight_No, No_Of_R, Runways,
No_Of_S, SIDRoutes, exitPoint"<<endl
 <<"Enter end-of-file to end the input .\n ? ";

 int flight_No;
 int NR;
 int NS;
 string runway;
 string SIDRoute;
 string exitPoint;

 cin>>flight_No;
 cin>>NR;
 outRCFile<<flight_No<<" "<<NR<<" ";
 for(int i=0;i<NR;i++)
 { cin>>runway;
 outRCFile<<runway<<" "; }
 cin>>NS;
 outRCFile<<NS<<" ";
 for(int i=0;i<NS;i++)
 { cin>>SIDRoute;
 outRCFile<<SIDRoute<<" "; }
 cin>>exitPoint;
 outRCFile<<exitPoint<<"\n";
 outRCFile.close();
}

4.4 Checking of Resource Constraints

During the run of backtrack () function in main () the file
“RC.dat” will behave as a domain for resource constraint
checking. To check resource constraint we write a function
for each Runway, SID route and exit point. These functions
are placed in the header files checkRunwayResource.h
checkSIDRouteRresource.h and checkExitPointResource.h,
and the C++ code for these are as below:

 checkRunway()
 Similarly for checkSIDRoute() and checkExitPoint().

Paper ID: 020131104 275

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

4.5 Domain for Runway, SID Route and Exit Point

It’s been require assigning runways, SID routes and exit
points to all flights during the whole course of program run.
So, prior to the execution of the function main() Runway
Domain, SID Route Domain and exit point domain is to be
fixed. That part is taken care of by the functions
DomainRunway(), DomainSIDRoute() and
DomainExitPoint(). These functions are placed in the header
files DomainRunway.h, DomainSIDRoute.h and
DomainExitPoint.h respectively. Basically these functions
create files Runway.dat, SIDRoute.dat and ExitPoint.dat
containing the all possible values for runways, SID routes
and exit points respectively. The C++ code for this task is as
below:

 DomainRunway
void DomainRunway()
{
 ofstream
outRunwayFile("Runway.dat",ios::out);
 if(!outRunwayFile)
 {
 cerr<<"File could not be opened"<<endl;
 exit(1);
 }
 string Runway;
 cout<<"Enter Runways one by one :
"<<endl
 <<"Enter end-of-file to end input \n? ";
 while(cin>>Runway)
 {
 outRunwayFile<<Runway<<endl;
 cout<<"? ";
 }
}

 Similarly for DomainSIDRoute() and DomainExitPoint()

4.6 Assignment from Different Domains

We write two functions namely FromDomainRunway() and
FromDomainSIDRoute() that returns the runway and SID
route from their respective domains when being called by
the Flight object. These functions are being placed in
AssigningFromRunway.h and AssigningFromSIDRoute.h
header files.

For each Flight object a pointer is assigned and its value is
changed whenever an assignment is being made to the
Flight. C++ code for this is as under:

1. Assigning from runway
string FromDomainRunway(int *Rptr)
{
 int End;
 ifstream
inRunwayFile("Runway.dat",ios::in);

 if(!inRunwayFile)
 {
 cerr<<"File could not be opened"<<endl;
 exit(1);
 }
 string Runway;
 inRunwayFile.seekg(*Rptr);
 inRunwayFile>>Runway;
 *Rptr=inRunwayFile.tellg();
 inRunwayFile.seekg(0,ios::end);
 End=inRunwayFile.tellg();
 inRunwayFile.seekg(*Rptr);
 if(*Rptr==(End-1))
 *Rptr=0;
 inRunwayFile.close();
 return Runway;
}

2. Assigning from SID route
string FromDomainSIDRoute(int *Sptr)
{
 int End;
 ifstream
inSIDRouteFile("SIDRoute.dat",ios::in);

 if(!inSIDRouteFile)
 {
 cerr<<"File could not be opened"<<endl;
 exit(1);
 }
 string sidroute;
 inSIDRouteFile.seekg(*Sptr);
 inSIDRouteFile>>sidroute;
 *Sptr=inSIDRouteFile.tellg();
 inSIDRouteFile.seekg(0,ios::end);
 End=inSIDRouteFile.tellg();
 inSIDRouteFile.seekg(*Sptr);
 if(*Sptr==(End-1))
 *Sptr=0;
 inSIDRouteFile.close();
 return sidroute;
}

int checkRunway(int flightNumber,string
runway)
{
 int fn,nr,i,ns;
 char str[15],xtra[256];
 ifstream infile("RC.dat",ios::in);
 if(!infile)
 { cerr<<"File could not be opened."<<endl;
 exit(1); }
 while(!infile.eof())
 { infile>>fn;
 if(fn==flightNumber)
 {infile>>nr;
 for(i=0;i<=nr;i++)
 {infile.getline(str,14,' ');
 if(runway==str)
 {infile.close();
 return 1;}
 }
 }
 infile.getline(xtra,255);
 }
 infile.close();
 return 0;
}

Paper ID: 020131104 276

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

4.7.1 Backtracking Flowchart

4.7.2 Backtracking Function

We use recursion to do backtracking.

void backtrackFunction(int unassigned,int i,Flight F[N],int
TCT1[][10],int TCT2[][10],int TT[][N],int Rptr[],int Sptr[])
{
int j,l,breakc,ex;
char ch;
int bt=0;
int statusR,statusS,statusTC,statusTOT;
int bforR=0;
if(unassigned==0)
{
cout<<"\n=====================================
==
======================\n";
for(int k=0;k<N;k++)
{
F[k].showData();
cout<<"Rptr["<<k<<"] = "<<Rptr[k]<<"\tSptr["<<k<<"] =
"<<Sptr[k]<<endl<<endl;
}
cout<<"======================================
==
=====================\n";

cout<<"For another result press a ";
cin>>ch;
return;
}
if(unassigned>0)
{
while(1)
{
F[i].setRunway(FromDomainRunway(&Rptr[i]));
statusR=checkRunway(F[i].getFlightNo(),F[i].getRunway());
cout<<"status of "<<F[i].getRunway()<<" for F["<<i<<"] =
"<<statusR<<" Value of Rptr = "<<Rptr[i]<<endl;
if(statusR==1)
{
while(1)
{
F[i].setSidRoute(FromDomainSIDRoute(&Sptr[i]));
statusS=checkSIDRoute(F[i].getFlightNo(),F[i].getSidRoute()
);
cout<<"status of "<<F[i].getSidRoute()<<" for F["<<i<<"] =
"<<statusS<<"Value of Sptr = "<<Sptr[i]<<endl;
if(statusS==1)
{
//--------------checking topology constraint I----------------------

statusTC=checkFromTCT1(F[i].getRunway(),F[i].getSidRout
e(),TCT1);
cout<<"status of TC1 for F["<<i<<"] = "<<statusTC<<endl;
if(statusTC==1)
{
//----------checking topology constraint II-------------------------

statusTC=checkFromTCT2(F[i].getExitPoint(),F[i].getSidRou
te(),TCT2);
cout<<"status of TC2 for F["<<i<<"] = "<<statusTC<<endl;
//---

if(statusTC==1)
{
cout<<endl<<"Allotment of Take off time and checking of
separation constraint"<<endl;
//---

for(j=F[i].getCFMUSTime();j<=F[i].getCFMUETime();j++)
{
F[i].setTakeOffTime(j);//allotment of takeoff time
statusTOT=1;
cout<<"Take off time for F["<<i<<"] =
"<<F[i].getTakeOffTime()<<endl;
if(i>0)
{
for(l=0;l<i;l++)
{
//checking of separation constraint
if((F[i].getRunway())==(F[l].getRunway()))
{
if(F[l].getTakeOffTime()>F[i].getTakeOffTime())
{
if(diff(F[l].getTakeOffTime(),F[i].getTakeOffTime())>=TT[i]
[l])
{
cout<<diff(F[l].getTakeOffTime(),F[i].getTakeOffTime());
cout<<" "<<TT[i][l]<<endl;

Paper ID: 020131104 277

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

statusTOT=1;
}
else
{
cout<<diff(F[l].getTakeOffTime(),F[i].getTakeOffTime());
cout<<" "<<TT[i][l];statusTOT=0;
// cout<<" -> Separation constraint get voilated\n";
break;//break out of separation constraint checking
}
}
else
{
if(diff(F[i].getTakeOffTime(),F[l].getTakeOffTime())>=TT[l]
[i])
{
cout<<diff(F[i].getTakeOffTime(),F[l].getTakeOffTime());
cout<<" "<<TT[l][i]<<endl;
statusTOT=1;
}
else
{
cout<<diff(F[i].getTakeOffTime(),F[l].getTakeOffTime());
cout<<" "<<TT[l][i]<<endl;
// cout<<" -> Separation constraint get voilated\n";
statusTOT=0;
break;//break out of separation constraint checking
}
}
}

}//end of for loop for separation constraint checking

}//end of (i>0) if condition

if(statusTOT==1)
{
F[i].showData();
cout<<"======================================
==
===\n";
i++;unassigned--;
backtrackFunction(unassigned,i,F,TCT1,TCT2,TT,Rptr,Sptr);
i--;unassigned++;
}

}//end of for loop for takeoff time allotement

}//end of if condition for topology constraint II

if(statusTC==0&&Sptr[i]==0)
break;//go out of loop to change the runway

}//end of if condition for topology constraint I

if(statusTC==0&&Sptr[i]==0)
break;//go out of loop to change the runway

}//end of if condition for SIDROUTE Resource constraint
checking i.e. if(statusS==1) end here

if(statusS==0&&Sptr[i]==0)
break;
if((statusTOT==0)&&(j>F[i].getCFMUETime())&&(Rptr[i]!

=0)&&(Sptr[i]==0))
{
cout<<"\nRunway is getting changed skipping backtrack
since for F["<<i<<"] runways are available\n";
break;
}
if((statusTOT==0)&&(j>F[i].getCFMUETime())&&(Rptr[i]=
=0))
{
Sptr[i]=0;
cout<<"\nbacktrack as no possible takeoff time can be
obtained for any runway for F["<<i<<"]\n";
return;
}
}//end of while loop for sid route

}//end of if condition for RUNWAY Resource constraint
checking i.e. if(statusR==1) end here

if((i>0)&&(statusR==0)&&(Rptr[i]==0))
{
Sptr[i]=0;
cout<<"\nbacktrack as no possible takeoff time can be
obtained for any runway for F["<<i<<"]\n";
return;
}
if((i==0)&&(statusR==0)&&(Rptr[i]==0))
{
cout<<"\n No possible departure schedule can be obtained
\n";
return;
}

}//end of while loop for runway
}
�
4.8 Driver Program

int main()
{
Flight F[N]=
{Flight("high","medium","hdo",1000,1015,2134),Flight("lo
w","medium","holan",1005,1020,3124),Flight("medium","lo
w","holan",1010,1025,1234),Flight("low","low","rak",1005,
1020,2314),Flight("medium","medium","hdo",1005,1020,43
21)};

int
TransitionTable[N][N],TopologyConstraintTable1[3][10],To
pologyConstraintTable2[3][10],i=0;

int Rptr[N]={0},Sptr[N]={0};

constructTT(F,TransitionTable);

for(int a=0;a<N;a++)
{
for(int b=0;b<N;b++)
cout<<" "<<TransitionTable[a][b];
cout<<endl;
}

constructTCT1(TopologyConstraintTable1);

Paper ID: 020131104 278

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

constructTCT2(TopologyConstraintTable2);

cout<<"\nGive Resource Constraint for each Flight one by
one :\n";
for(i=0;i<N;i++)
{
ResourceConstraint();
cout<<endl<<endl;
}

backtrackFunction(N,i,F,TopologyConstraintTable1,Topolog
yConstraintTable2,TransitionTable,Rptr,Sptr);
}

5. Results and Discussion

Considering the Prague airport topology, and a hypothetical
set of Flights as under:
F1 F2 F3 F4 F5
Speed Class High Low Medium Low Medium
Weight Class Medium Medium Low Low Medium
Exit point Hdo Holan Holan Rak Hdo
CFMU
Time Interval
10:00-10:15 10:05-10:20 10:10-10:25 10:05-10:20 10:10-
10:25
Flight
Number
2134 3124 1234 2314 4321
With default separation time as 10 min and large separation
time as 15 min.

The solution of this example on the execution of the
program will be as below:
Transition table is :
15 10 15 10 10
15 10 15 10 10
15 10 15 10 10
15 10 15 10 10
15 10 15 10 10
Fill the table for connection between runways and sid routes
.
1 1 0 1 1 0 1 0 0 0
0 0 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1
Fill the table for connection between exit point and sid
routes
1 1 1 0 0 0 0 0 0 1
0 0 0 1 1 1 0 0 1 0
0 0 0 0 0 0 1 1 0 0
Give resource constraints for the flights:
2134 2 runway24 runway31 3 hdo8f kadno hdo8g hdo
3124 3 runway24 runway31 runway06 3 holan8a holan8g
holan8j holan
1234 3 runway24 runway31 runway06 3 holan8f holan8g
holan8j holan
2314 2 runway24 runway31 2 rak8f rak8g rak
4321 2 runway31 runway06 2 hdo8g hdo8j hdo
49
Solution is
Flight Number : 2134
TakeOff runway : runway24 Sid route : hdo8f TMA exit
point : hdo

Speed Class : high Weight class : medium
CFMU Strat time of flight : 1000 CFMU End time of flight :
1015
Takeoff time : 1000

Flight Number : 3124
TakeOff runway : runway24 Sid route : holan8a TMA exit
point : holan
Speed Class : low Weight class : medium
CFMU Strat time of flight : 1005 CFMU End time of flight :
1020
Takeoff time : 1010

Flight Number : 1234
TakeOff runway : runway31 Sid route : holan8g TMA exit
point : holan
Speed Class: medium Weight class : low
CFMU Strat time of flight : 1010 CFMU End time of flight :
1025
Takeoff time : 1010

Flight Number: 2314
TakeOff runway: runway24 Sid route : rak8f TMA exit
point : rak
Speed Class: low Weight class : low
CFMU Strat time of flight: 1005 CFMU End time of flight :
1020
Takeoff time: 1020

Flight Number: 4321
TakeOff runway: runway31 Sid route : hdo8g TMA exit
point : hdo
Speed Class: medium Weight class : medium
CFMU Strat time of flight: 1005 CFMU End time of flight:
1020
Takeoff time: 1020

The departure scheduling prototype presented in this paper
provides runway controllers with a decision support tool to
establish optimal departure sequences for aircraft. As a
consequence, runway capacity will be effectively enhanced
without any physical changes to the airport infrastructure.
The major advantage of the prototype lies in its flexibility:
any airport topology can be used, inbound traffic is taken
into account and certain take-off times or - orders can be
fixed while others can be scheduled. The performance our
solution achieves is acceptable for practical application at
airports such as Prague. A future step might be to reduce the
problem into Distributed Constraint Satisfaction Problem
(DCSP) in order to get more efficiency. We expect that the
acceptance of the tool will be high, since runway controllers
will remain involved in the scheduled process. They will be
able to impose restrictions on a schedule beforehand, and
make modifications to calculated solutions afterwards by
replanning parts of the generated schedule.

References

[1] S. Zelinkski and T. Romer, “An Airspace Concept
Evaluation System Characterization of National
Airspace System Delay,” AIAA 4th Aviation
Technology, Integeration and Operations (ATIO),
September 2004.

Paper ID: 020131104 279

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

[2] Idris, H., Delcaire, B., Anagnostakis, I., Hall, W., Pujet,
N., Feron, E., Hansman, R., Clarke, J., and Odoni, A.,
\Identi_cation of Flow Constraint and Control Points in
Departure Operations at Airport Systems," AIAA
Guidance, Navigation, and Control Conference,
Boston, MA, Aug. 10-12, 1998.

[3] Wood Z., Kistler M., Rathinam S., and Jung Y., \A
Simulator for Modelling Aircraft Surface Operations at
Airports," AIAA Modeling and Simulation
Technologies Conference, Chicago, IL., August 2009.

[4] Gupta, G., Malik, W., and Jung, Y. \Incorporating
Active Runway Crossings in Airport Departure
Scheduling," AIAA Guidance, Navigation and Control
Conference, Toronto, Canada, August 2-5, 2010.

[5] Brinton, C., Atkins, S., Cook, L., Lent, S., and Prevost,
T., \Ration by Schedule for airport arrival and
departure planning and scheduling,” Integrated
Communications Navigation and Surveillance
Conference (ICNA), Herndon, VA, 11-13 May 2010

[6] Gupta, G., Malik., W., and Jung, Y., \A Mixed Integer
Linear Program for the Airport Departure Scheduling
Problem," 9th AIAA Aiviation Technoology,
Integration, and Operations Conference (ATIO), Hilton
Head, SC, September 2009

[7] H.N., Psaraftis, \A dynamic programming approach for
sequencing groups of identical jobs," Operations
Research 28 (1980), 13471359

[8] Balakrishnan, H. and Chandran, B., \E_cient and
Equitable Departure Scheduling In Real-Time: New
Approaches To Old Problems," 7th USA/Europe Air
Tra_c Management R&D Seminar, July 2007,
Barcelona, Spain

[9] Stiverson, P., Rathinam, S., \Heuristics for a runway-
queue management problem," Proceedings of the
Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, August 2010

[10] Rathinam, S., Wood, Z., Sridhar, B., and Jung, Y. C.,
\A Generalized Dynamic Programming Approach for a
Departure Scheduling Problem," AIAA Guidance,
Navigation, and Control Conference, Chicago, Illinois,
August 10-13, 2009

[11] Anonymous, “Aircraft Operations,” Aerospace
America, Dec. 1994, pp. 29

[12] Federal Aviation Administration, Air Traffic Control ,
1994

[13] Federal Aviation Administration, Airman’s Information
Manual, Nov. 1995

[14] Carr, G., Erzberger, H., and Neuman, F., “Airline
Arrival Prioritization in Sequencing and Scheduling,”
Second USA/ Europe Air Traffic Management R&D
Seminar, December 1-4 1998

[15] P. J. Deitel and H. M. Deitel, C++ How to program ,
6th edition

[16] P. van Leeuwen, H.H. Hesselink and J.H.T. Rohling,”
Scheduling aircraft using constraint satisfaction”

Author Profile

Ranjan Kumar Thakur received the M. Tech. degree
in Computer Science and Data Processing from Indian
Institute of Technology Kharagpur 2012.

Paper ID: 020131104 280

