Data Aggregation in Wireless Sensor Networks

Arabind Kumar, Ram Baksh, Ranjan Kumar Thakur, Aditya Pratap Singh

Delhi University, Department of Mathematics, Kamala Nehru College, August Kranti Marg, New Delhi - 110049
Delhi University, Department of Mathematics, Dyal Singh College, Lodhi Road, New Delhi - 110003
Delhi University, Department of Mathematics, Deshbandhu College, Kalkaji, New Delhi - 110019
Delhi University, Department of Mathematics, PGDAV College(Evening), Nehru Nagar, New Delhi - 110065

Abstract: Wireless sensor networks consist of sensor nodes with sensing and communication capabilities. Efficient aggregation of data collected by sensors is crucial for a successful application of wireless sensor networks (WSNs). Both minimizing the energy cost and reducing the time duration of data aggregation have been extensively studied for WSNs. Algorithms with theoretical performance guarantees are only known under the protocol interference model, or graph-based interference models generally. A fundamental challenge in the design of Wireless Sensor Network (WSNs) is to maximize their lifetimes. Data aggregation has emerged as a basic approach in WSNs in order to reduce the number of transmissions of sensor nodes, and hence minimizing the overall power consumption in the network.

Keywords: Dominating, Aggression, Protocol, WSN

1. Introduction

Wireless Sensor Networks are a result of the combination of advances made in the field of analog and digital circuitry, wireless communications and sensor technology. A wireless sensor network typically consists of small devices called sensor nodes that are capable of sensing the environment around them. The sensor nodes are devices that are capable of sensing, gathering, storing and transmitting information. The main advantage of these nodes is their self-organizing capability. Large networks of such small nodes are therefore growing in use. The sensor nodes can be deployed anywhere without actually having to install or deploy them manually. In remotely inaccessible areas, these sensor nodes are just strewn across the desired sensor field. The self-organizing capability of the sensor nodes enables the nodes to form a cooperative network and gather information. This information can then be retrieved. Thus, sensor networks enable intelligent monitoring of inaccessible areas with ease and accuracy. Wireless sensor network (WSN) is a term used to describe an emerging class of embedded communication products that provide redundant, fault-tolerant wireless connections between sensors, actuators and controllers [1].

The main challenges with wireless sensor network are how to provide maximum lifetime to network and how to provide robustness to network. As sensor network totally rely on battery power, the main aim for maximizing lifetime of network is to conserve battery power or energy. In sensor network, the energy is mainly consumed for three purposes: data transmission, signal processing, and hardware operation. The 70% of energy consumption is due to data transmission. So for maximizing the network lifetime, the process of data transmission should be optimized. The data transmission can be optimized by using efficient routing protocols and effective ways of data aggregation.

2. Tree-Based Data Aggregation

In this all nodes are organized in form of tree means hierarchical, with the help of intermediate node we can perform data aggregation process and data transmit leaf node root node. Tree-based data aggregation is suitable for applications which involve in-network data aggregation. An example application is radiation-level monitoring in a nuclear plant where the maximum value provides the most useful information for the safety of the plant. One of the main aspects of tree-based networks is the construction of an energy efficient data-aggregation tree.

2.1 Data Aggregation by Tree Construction

Consider a given network G , V is a set of all sensor nodes that consist the network G and r is distance between two nodes (u, v) that is length between two nodes .The combination form by these link is denoted by G(V, r).

3. Definitions

3.1 Center of Topology

Any node v₀ is called the center of topology of G(V, r) if

v₀ = \min_{u,v} dg(u, v) where \(dg(u, v)\) is the hop distance between nodes u and v in G(V, r).

3.2 Connecting Dominating Set (CDS)

Consider any graph G= (V, E), a subset \(V₀\) of V is a dominating set if each node in V₀ is either in \(V₀\) or adjacent to some node in \(V₀\) . Nodes in \(V₀\) are called dominators where as nodes not in \(V₀\) are called dominatees. A subset C of V is called a connected dominating set if C is a dominating set and C includes a connected sub graph.

3.3 Maximal Independent Set (MIS)

The collections of nodes that are separated at two hop distance [10]. Construct the aggregation tree on the
communication graph $G(V, r)$ using Algorithm 1. The basic idea of Algorithm 1 is to construct a tree similar to the breadth-first-search tree, with the following properties:

1. The depth of the tree is within a small constant factor of the diameter $D(G)$,
2. Each internal node will be connected with at most a constant number of other internal nodes.

The second property ensures that we can schedule the transmissions of internal nodes in constant time-slots. The algorithm is based on the following properties.

1. We select the topology center of $G(V, r)$ as the root of our BFS tree. The topology center selection enables us to reduce the latency to a function of the network radius $R(G)$, instead of the network diameter $D(G)$.
2. After the topology center gathered the aggregated data from all nodes, it will then send the aggregated result to the sink node via the shortest path from the topology center to V_0, the sink node.

In a tree-based network, sensor nodes are organized into a tree where data aggregation is performed at intermediate nodes along the tree and a concise representation of the data is transmitted to the root node. Tree-based data aggregation is suitable for applications which involve in-network data aggregation. An example application is radiation level monitoring in a nuclear plant where the maximum value provides the most useful information for the safety of the plant. One of the main aspects of tree-based networks is the construction of an energy efficient data aggregation tree.

4. A New Approach for Finding Maximal Independent Set (MIS)

According to the definition of maximal independent set, it is the collection of the nodes which are separated at two hop distance from a certain node. Let G be a non-cyclic graph and V be the set of all nodes. In this approach for finding MIS, I am using two function $find_MIS()$ and $get_node()$ and call these function in the main algorithm.

In function $find_MIS()$ first of all pass a center node and then storing all the adjacent node of center in the set S and then for each node of the set S find rank and visit of node and if the rank of node is 2 and node is not center and visit of node is less than or equal to two then print the node. Repeat the same process for each node of graph. The function $get_node()$ is worked on the set S. This function is return the first node of set S and the decrease the one in the number of nodes in the set S.

Algorithm:

```python
find\_MIS(node)
begin
    centre <-- node
    S <-- set of all nodes adjacent to centre
    C <-- centre of graph and Display(C)
    while (S is non-empty)
        do
            { node <-- get\_Node(S)
                rank(node) <-- rank(centre) + 1
                visit(node) <-- visit(node) + 1
                if (rank(node) = 2 & node != C & visit(j) <= 2)
                    Display(node)
                rank(node) <-- 0
            end if
        end while
    get\_Node(S)
    begin
        n(S) <-- no. of nodes in S
        return (first node of S)
        n(S) <-- n(S) - 1
    end
```

5. Simulation Result for the Algorithm Aggregation Tree Construction

The n nodes randomly deploy in a two-dimensional square area and randomly choose one node as the sink node. The objective is to measure the latency for the sink node to get the aggregation result of all data using our aggregation scheduling algorithm. Note that latency is defined as the number of time slots needed to aggregate all data from within the network to the sink node. The effect of network radius R, we create a network instance similar to the first one with two crucial modifications we vary the network deployment area from (200m x200m) to (1000m x1000m) gradually with the network size. In other words, fix the node density in the network deployment area. It is find that Δ is nearly fixed (around 25) as well in the corresponding communication graph. At the same time, R increases monotonously with the network size. Now measure the performance of Algorithm under this condition; the average performance is illustrated in Figure. This is because we use $\Delta + R$ as a lower bound on the latency. This means that either Algorithm can be potentially further improved or the lower bound $\Delta + R$ should be improved for data aggregation under the physical interference model.

6. Conclusion of Algorithms

In first algorithm each child node send their data to parent node and finally all the data are collected at the center node and then center node send data to sink or base station. Since
in this algorithm for traversing of graph, using breath first search, the benefit is that the data are send from different node to center node by shortest path by this way the latency decreases and node save some part of energy and finally life time of sensor networks are increased.

References