
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

Design and Simulation of Four Stage Pipelining
Architecture Using the Verilog

Rakesh M. R

M. Tech Student, Dept of ECE, Canara Engineering College, Mangalore, Karnataka, India

Abstract: The computer or any devices use the concept of parallelism for speedup of system operations. The one of parallelism
technique is pipelining concept. Many devices using the pipelining for increase speed and throughput. The overall pipeline stage can be
subdivided into stages such as fetch, decode, execute, store. In this paper the design and simulation of four stage pipeline can be done
separately using the Xilinx ISE and Modelsim simulator. It shows how the each stage of pipeline performs the operations.

Keyword: instruction, pipeline, speed of operation, processor cycle

1. Introduction

An instruction as the name instructs the computer what to do.
In simple terms, every line of a program that we as users
write instructs the computer to perform a series of
operations. A computer understand these high level
instructions by converting them into a machine
understandable form known as machine language comprising
of 1’s and 0’s. The work to be done in an instruction is
broken into smaller steps (pieces), each of which takes a
fraction of the time needed to complete the entire instruction.
Each of these steps is a pipe stage (or a pipe segment). Pipe
stages are connected to form a pipe.

An instruction cycle is the basic operation cycle of a
computer. It is the process by which a computer retrieves a
program instruction from its memory, determines what
actions the instruction requires, and carries out those actions.
This cycle is repeated continuously by the central processing
unit (CPU), from boot up to when the computer is shut
down. In simpler CPUs, the instruction cycle is executed
sequentially: each instruction is completely processed before
the next one is started. In most modern CPUs, the instruction
cycle is instead executed concurrently in parallel, as an
instruction pipeline: the next instruction starts being
processed before the previous instruction is finished, which
is possible because the cycle is broken up into separate steps.

Pipeling computer architecture has recieved considerable
attention since the 1960s when the need for faster and more
cost effective system became critical.the merit of pipeling is
that it can help to match the speed of various subsystems
without duplicating the cost of the entire system involved.as
technology evolves faster and cheaper LSI circuits became
available,and the future of pipeling either in a simple or
complex form became more promising. Pipelining is a
technique for overlapping operations during execution.
Today this is a key feature that makes fast CPUs. Different
types of pipeline are instruction pipeline, operation pipeline,
and multi-issue pipelines.

In this paper we are going to simulate the pipelining stages
such as fetch, decode, execute, store separately. The separate
simulation can be done in order to show the working of
every stage. The simulation procedure can be done by the
use of Xilinx ISE tool and Modelsim simulator.

2. Concept of pipelining

Pipelining, a standard feature in RISC processors, allows for
multiple instructions are overlapped in execution (to be
executed during one clock cycle). In a pipelined processor,
the datapath is divided into subsequent stages. Each stage is
given an input from the previous stage, performs a specific
operation on the given input, and passes the resulting output
to the next stage in the datapath.

Each of these steps is called a pipe stage or a pipe segment.
The stages are connected one to the next to form a pipe—
instructions enter at one end, progress through the stages,
and exit at the other end. The throughput of an instruction
pipeline is determined by how often an instruction exits the
pipeline. The time required between moving an instruction
one step down the pipeline is a processor cycle. Because all
stages proceed at the same time, the length of a processor
cycle is determined by the time required for the slowest pipe
stage, the longest step would determine the time between
advancing pipe stage. In a computer, this processor cycle is
usually one clock cycle (sometimes it is two, rarely more).
Under these conditions, the speedup from pipelining equals
the number of pipe stages. Thus, the time per instruction on
the pipelined processor will not have its minimum possible
value, yet it can be close.

Figure1: Processing of instruction

Pipelining yields a reduction in the average execution time
per instruction. The reduction can be viewed as decreasing
the number of clock cycles per instruction (CPI), as
decreasing the clock cycle time, or as a combination. If the
starting point is a processor that takes multiple clock cycles
per instruction, then pipelining is usually viewed as reducing
the CPI. This is the primary view we will take. If the starting
point is a processor that takes one (long) clock cycle per
instruction, then pipelining decreases the clock cycle time.

The time required for moving an instruction from one stage
to the next: a machine cycle (often this is one clock cycle).
The execution of one instruction takes several machine
cycles as it passes through the pipeline. After a certain time
(N-1 cycles) all the N stages of the pipeline are working: the

Paper ID: 020131078 108

pi
pr
si
al
nu
in
st
gr

P
ex
de
ta
in
m
in
su
th
st
in
in
in
m
st

2

P
nu
no
fa
in
in
fa
si
of
pr
fr
pi
th
no
F
hi
sp

A
S

ipeline is fil
roviding max
imultaneously
lways provid
umber of s
nformation be
tages. With th
rows.

ipelining is a
xecution has
ecode, instruc
asks, which
ntermediate re

may move on
nto smaller su
ub-tasks of se
he intermedia
tored, they w
nstruction is
nstruction is
nstruction som

memory will b
tage will be fe

.1 Performan

ipelining inc
umber of instr
ot reduce the
act, it usually
nstruction due
ncrease in inst
aster and has
ingle instructi
f each instru
ractical depth
rom pipeline l
ipe stages and
he pipe stages
o faster than t
or unpipeline
igh. But by th
peed of execu

Average instru
peed from pip

led. Now, th
ximal parallel
y). Apparentl
de better per
stages increa
etween stage

he number of s

achieved: the
been divided
ction execute,
is executed

esults that mu
to the next s

ub-tasks, it is
everal differen
ate results of
would be lost

taken for p
fetched, it is

mewhere, beca
be different o
etching a comp

Figure 2:

Figure 3

nce of Pipelin

reases the C
ructions comp
execution tim
slightly incre

e to overhead i
truction throu

lower total
on runs faster

uction does n
 of a pipeline.
latency, limits
d from pipelin
s reduces perf
the time need
ed processor t
he use of the

ution increases

uction execu
pelining can b

Internatio

heoretically, t
lism (N instr
y a greater
rformance. H
ase the ove
s and synchr
stages the com

sub-tasks into
are instructio

, store result.
by a pipelin
st be stored b
stage. By bre
possible to o

nt instructions
f the various
: during the

process. For
s necessary to
ause the outpu
on the followi
pletely differe

: Unpipelined

3: Pipelined p

ning

CPU instructio
pleted per unit

me of an indiv
eases the exec
in the control

ughput means
execution tim
r. The fact tha
not decrease
. In addition to
s arise from im
ning overhead
formance sinc
ded for the slo
the clock per
pipelining th

s.

ution time=cl
e given by;

onal Journa
ISSN (

Volume 3

the pipeline
ructions are
number of

However a g
erhead in m
ronization be

mplexity of the

o which instr
on fetch, instr

Each of thes
ne stage, pro
before an instr
eaking up exe
overlap the dif
s simultaneou
 sub-tasks ar
next cycle a
instance, aft

o store the f
ut of the instr
ing cycle, the
ent instruction

processor

processor

on throughpu
t of time, but i
idual instructi
cution time o
of the pipelin
that a program

me, even thou
at the executio

puts limits o
o limitations a

mbalance amo
d. Imbalance a
ce the clock c
west pipeline

r instruction c
he CPI decrea

ock* average

al of Scienc
(Online): 23

3 Issue 3, M
www.ijsr.n

works
active
stages

greater
moving
etween
e CPU

ruction
ruction
se sub-
oduces
ruction
ecution
fferent

usly. If
re not

another
fter an
fetched
ruction
e fetch
n.

ut, the
it does
ion. In

of each
ne. The
m runs
ugh no
on time
on the
arising

ong the
among
an run
stage.

can be
se and

e CPI

2.2

Sup
45
Mac
460
100

2.3

Lat
exe
ofte

Thr
(gen
ope
exe

CPI

Pro
inst
CPU
the
the
CPI

Pote
leng

3.

Inst
are;
 In
 In
 E
 S

We
in e

3.1

In t
from
the
Cor
acce

Nex
inst
cou

ce and Rese
319-7064

March 2014
net

Avera

Aver

Use of Pipeli

ppose we exec
ns/cycle x 1
chine: 10 ns/c

00 ns. Ideal p
0 inst + 4 cycle

Pipeline char

tency: The am
cute. The late

en dependent i

roughput: Th
nerally ex

erations/cycles
cution is over

I: Pipeline yie

cessor cycle
truction one st
U clock cycle
length of the
average exe

I pipeline = C

ential speedu
gth of pipe sta

Phases of P

truction execu
;
nstruction fetc
nstruction dec

Execution (EX
Store (ST)

 used a registe
each phase of i

Instruction f

this phase, the
m memory us
memory loca

rresponding l
essed and is a

xt, the program
truction. This
unter. The new

earch (IJSR

4

age instuction

rage instuctio

ine

cute 100 instru
 CPI x 100

cycle x 4.6 CP
pipelined mac
e drain) = 104

racteristics

mount of time
ency of pipeli
instruction ma

he rate at w
xpressed a
s). Throughpu
rlapped.

elds a reductio

 is time re
tep down the
. The slowest

e processor cy
cution time p
PI / # of pipel

up = Number
ages reduces s

Pipeline

ution can be d

ch (IF)
code & operan

X)

er transfer not
instruction ex

fetch (IF)

e instruction
sing PC (prog
ation (read the
location in

assigned to the

IR <-- M

m counter is in
s is done by a

w value of PC

NPC <--

R)

n tim e unpip

ion tim e pipe

uctions. Singl
inst = 4500

PI (due to inst
chine: 10 ns/

40 ns

that a single o
ined processor
ay be executed

which operati
s operatio

ut > 1/latency,

on in cycles p

equired betw
pipeline. 1 pr

t pipeline stag
ycle. Pipelinin
per instructio
line stages.

r pipe stages
speedup.

divided into fo

nd fetch (ID)

tation to descr
xecution.

to be execute
gram counter)
 instruction fr
the (instruct

e instruction re

Mem [PC];

ncremented to
adding 1 to the
is stored in th

- PC + 1;

elined

lined

e Cycle Mach
0 ns. Multi c

mix) x 100 in
/cycle x (1 CP

operation take
r determines
d.

ion get exec
ons/seconds
, since instruc

er instruction.

ween moving
rocessor cycle
ge thus determ
ng aims to red
on (CPI). Idea

. An unbalan

our phases. Th

ribe what happ

ed next is fetc
as the addres

rom the memo
tion) memory
egister (IR).

o point to the
e current prog

he NPC registe

hine:
cycle
nst =
PI x

es to
how

uted
or

ction

.

 an
e = 1

mines
duce
ally:

nced

hese

pens

ched
ss of
ory).
y is

next
gram
er.

Paper ID: 020131078 109

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

3.2 Instruction Decode & Operand Fetch (ID)

Once the Instruction Register is loaded with the instruction,
decoding of that instruction along with operand fetching
starts (decode the instruction and fetch the source
operand(s)). Depending upon the instruction format (R, I or
J), opcode along with the function code fields are used to
decode the instruction. Simultaneously, the two source
operands are fetched using the Rs1 and Rs2 field of the
instruction. The fetched operands are stored in two internal
register A and B. As operand fetch takes place even before
the instruction decoding, fetching operand values into A and
B registers take place for all three instruction forms (R, I and
J) even though some instructions may have one or zero
source operands. Simultaneous register fetch is possible due
to the fixed field decoding (source operand fields are always
at the position in all instruction formats). Thus,

A <-- Rs1; B <- Rs2;

3.3 Execution (EX)

In this phase, perform the operation specified by the
instruction.

Arithmetic instructions are executed as follows. The
operands (A and B register) for R-format and (A and Imm)
for I-format are sent to the ALU with the appropriate control
signal for performing the arithmetic operation. The control
signals for the ALU and the MUX used to choose the second
operand (between B and Imm) are derived by the control unit
using the opcode and function code fields of the instruction
in IR. Thus,

ALU_out <-- A (+) B (for instruction in R-format)
ALUo_ut <-- A (+) Imm (for instruction in I-format)

Data transfer instructions, only computing the effective
address of the memory location is done in the EX phase. For
example, in case of a LOAD instruction,

LD R2, 8(R1)
the decode and operand fetch phase has fetched the source
register (R1) in A and the displace has been sign extended in
Imm register.

Control instructions (branching (by PC relative address), the
branch target address is calculated by adding the offset
(given in the offset field of the instruction, loaded and sign
extended in the Decode phase in the Imm register, to the
Next Program Counter (NPC) value. That is,

ALU_out <-- NPC + Imm

For this, the first input operand is NPC which is Multiplexed
with operand from the A register.

Store (ST) / (result write)

In this phase, for ALU and Load instructions, the result value
is written in the destination register (store the result in the
destination location). For branch instruction, PC is loaded
with the branch target address (calculated in the EX phase)

or NPC depending whether or not the condition specified in
conditional branch instruction is true. For ALU instruction,

Rd <-- ALU_out
For LD instruction

Rd <-- LDR

The computer is controlled by a clock whose period is such
that the fetch, decode, execute, store steps of any instruction
can each be completed in one clock cycle. In the first clock
cycle, the fetch unit fetches an instruction I1 and stores it in
buffer B1 at the end of the clock cycle. In the second clock
cycle, the instructions fetch unit proceeds with the fetch
operation for instruction I2. The decode unit performs the
operation specified by instruction I1, which is available to it
in buffer B1. By the end of the second clock cycle, the
decoding of instruction I1 is completed and instruction I2 is
available. Step execute of I1 is performed by the execution
unit during the third clock cycle, while instruction I3 is being
fetched by the fetch unit.

But in this paper we are going to ignore the hazards takes
place during the pipelining. Therefore the methods for
avoiding pipeline hazards also ignored.

4. Application

The advantages of a pipelining are an increase in throughput
and reduced response time. This processor can be used not
only in traditional computing applications such as desktops,
laptops, workstation etc. but also as a component in another
piece of technology such as either a cell phone, digital
camera, portable digital assistant, household appliances,
automobile antilock brake system and many more.

5. Simulation result

The pipelining is divided into four sub stages such as fetch,
decode, execute, store. The simulation of each stage is done
by using Xilinx ISE and Modelsim simulator and is shown
bellow. The technology schematic for each stage is also
shown. The Verilog HDL can be used to design the each
stage of pipelining.

Paper ID: 020131078 110

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

Figure 4:Waveform and Technology schematic for Fetch(IF)
stage

Figure 5:Waveform and Technology schematic for

Decode(ID) stage

Figure 6:Waveform and Technology schematic for

Execute(EX) stage

Figure 7:Waveform and Technology schematic for

Store(ST) stage

6. Conclusion

The pipelining concept takes lot of advantages in many of
the systems. The pipelining has some of the hazards. In this
paper the hazards concept is ignored. The pipelining of
instructions which reduce the CPI, increases the speed of
execution or operation, and also increase throughput of
overall system. This is basic concept of any system and lot of
improvement can be done in pipelining concept to increase
the speed of system. The future scope is to apply the concept
to different embedded systems and we can see how the
performance increases by this concept.

References

[1] Tannu Chhabra, Md Tauheed Khan “VLSI Design of a
16-bit Pipelined RISC Processor”, International Journal
of Electronics and Computer Science Engineering, ISSN
2277-1956/V1N3-1858-1861

Paper ID: 020131078 111

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

[2] J.L.Hennessy, D.A.Patterson.2003, ‟Computer
Organization and Design: The Hardware/Software
Interface‟, 2nd Edition, Morgan Kaufmann.

[3] D. J. Smith. (2010), “HDL Chip Design‟, International
Edition, Doone Publications,

[4] A.S. Tanenbaum. 2000, “Structured Computer
Organization‟, 4th Edition, Prentice-Hall

[5] Luker, Jarrod D., Prasad, Vinod B.2001, “RISC system
design in an FPGA‟, MWSCAS 2001, v2, , p532536.

[6] Computer Organization & Design. David A. Patterson
and John L. Hennessy, ISBN 1-55860-428-6, p 476-501,
525-256.

Author Profile

Mr. Rakesh M. R received his B.E degree in
Electronics and Communication from KVG College of
Engineering Sullia in 2012. Currently he is pursuing
M. Tech degree in Electronics at Canara Engineering
College, Mangalore. His areas of interest are VLSI and

Image Processing.

Paper ID: 020131078 112

