International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Design and Simulation of Four Stage Pipelining
Architecture Using the Verilog

Rakesh M. R

M. Tech Student, Dept of ECE, Canara Engineering College, Mangalore, Karnataka, India

Abstract: The computer or any devices use the concept of parallelism for speedup of system operations. The one of parallelism
technique is pipelining concept. Many devices using the pipelining for increase speed and throughput. The overall pipeline stage can be
subdivided into stages such as fetch, decode, execute, store. In this paper the design and simulation of four stage pipeline can be done
separately using the Xilinx ISE and Modelsim simulator. It shows how the each stage of pipeline performs the operations.

Keyword: instruction, pipeline, speed of operation, processor cycle
1. Introduction

An instruction as the name instructs the computer what to do.
In simple terms, every line of a program that we as users
write instructs the computer to perform a series of
operations. A computer understand these high level
instructions by converting them into a machine
understandable form known as machine language comprising
of 1’s and 0’s. The work to be done in an instruction is
broken into smaller steps (pieces), each of which takes a
fraction of the time needed to complete the entire instruction.
Each of these steps is a pipe stage (or a pipe segment). Pipe
stages are connected to form a pipe.

An instruction cycle is the basic operation cycle of a
computer. It is the process by which a computer retrieves a
program instruction from its memory, determines what
actions the instruction requires, and carries out those actions.
This cycle is repeated continuously by the central processing
unit (CPU), from boot up to when the computer is shut
down. In simpler CPUs, the instruction cycle is executed
sequentially: each instruction is completely processed before
the next one is started. In most modern CPUs, the instruction
cycle is instead executed concurrently in parallel, as an
instruction pipeline: the next instruction starts being
processed before the previous instruction is finished, which
is possible because the cycle is broken up into separate steps.

Pipeling computer architecture has recieved considerable
attention since the 1960s when the need for faster and more
cost effective system became critical.the merit of pipeling is
that it can help to match the speed of various subsystems
without duplicating the cost of the entire system involved.as
technology evolves faster and cheaper LSI circuits became
available,and the future of pipeling either in a simple or
complex form became more promising. Pipelining is a
technique for overlapping operations during execution.
Today this is a key feature that makes fast CPUs. Different
types of pipeline are instruction pipeline, operation pipeline,
and multi-issue pipelines.

In this paper we are going to simulate the pipelining stages
such as fetch, decode, execute, store separately. The separate
simulation can be done in order to show the working of
every stage. The simulation procedure can be done by the
use of Xilinx ISE tool and Modelsim simulator.

2. Concept of pipelining

Pipelining, a standard feature in RISC processors, allows for
multiple instructions are overlapped in execution (to be
executed during one clock cycle). In a pipelined processor,
the datapath is divided into subsequent stages. Each stage is
given an input from the previous stage, performs a specific
operation on the given input, and passes the resulting output
to the next stage in the datapath.

Each of these steps is called a pipe stage or a pipe segment.
The stages are connected one to the next to form a pipe—
instructions enter at one end, progress through the stages,
and exit at the other end. The throughput of an instruction
pipeline is determined by how often an instruction exits the
pipeline. The time required between moving an instruction
one step down the pipeline is a processor cycle. Because all
stages proceed at the same time, the length of a processor
cycle is determined by the time required for the slowest pipe
stage, the longest step would determine the time between
advancing pipe stage. In a computer, this processor cycle is
usually one clock cycle (sometimes it is two, rarely more).
Under these conditions, the speedup from pipelining equals
the number of pipe stages. Thus, the time per instruction on
the pipelined processor will not have its minimum possible
value, yet it can be close.

INPUT

OUTPUT

Instruction processing

Figurel: Processing of instruction

Pipelining yields a reduction in the average execution time
per instruction. The reduction can be viewed as decreasing
the number of clock cycles per instruction (CPI), as
decreasing the clock cycle time, or as a combination. If the
starting point is a processor that takes multiple clock cycles
per instruction, then pipelining is usually viewed as reducing
the CPI. This is the primary view we will take. If the starting
point is a processor that takes one (long) clock cycle per
instruction, then pipelining decreases the clock cycle time.

The time required for moving an instruction from one stage
to the next: a machine cycle (often this is one clock cycle).
The execution of one instruction takes several machine
cycles as it passes through the pipeline. After a certain time
(N-1 cycles) all the N stages of the pipeline are working: the

Volume 3 Issue 3, March 2014

Paper ID: 020131078

WWW.ijsr.net

108

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

pipeline is filled. Now, theoretically, the pipeline works
providing maximal parallelism (N instructions are active
simultaneously). Apparently a greater number of stages
always provide better performance. However a greater
number of stages increase the overhead in moving
information between stages and synchronization between
stages. With the number of stages the complexity of the CPU
grows.

Pipelining is achieved: the sub-tasks into which instruction
execution has been divided are instruction fetch, instruction
decode, instruction execute, store result. Each of these sub-
tasks, which is executed by a pipeline stage, produces
intermediate results that must be stored before an instruction
may move on to the next stage. By breaking up execution
into smaller sub-tasks, it is possible to overlap the different
sub-tasks of several different instructions simultaneously. If
the intermediate results of the various sub-tasks are not
stored, they would be lost: during the next cycle another
instruction is taken for process. For instance, after an
instruction is fetched, it is necessary to store the fetched
instruction somewhere, because the output of the instruction
memory will be different on the following cycle, the fetch
stage will be fetching a completely different instruction.

Figure 2: Unpipelined processor

IF ID EX ST
IF D EX ST
IF D EX ST

Figure 3: Pipelined processor
2.1 Performance of Pipelining

Pipelining increases the CPU instruction throughput, the
number of instructions completed per unit of time, but it does
not reduce the execution time of an individual instruction. In
fact, it usually slightly increases the execution time of each
instruction due to overhead in the control of the pipeline. The
increase in instruction throughput means that a program runs
faster and has lower total execution time, even though no
single instruction runs faster. The fact that the execution time
of each instruction does not decrease puts limits on the
practical depth of a pipeline. In addition to limitations arising
from pipeline latency, limits arise from imbalance among the
pipe stages and from pipelining overhead. Imbalance among
the pipe stages reduces performance since the clock can run
no faster than the time needed for the slowest pipeline stage.
For unpipelined processor the clock per instruction can be
high. But by the use of the pipelining the CPI decrease and
speed of execution increases.

Average instruction execution time=clock* average CPI
Speed from pipelining can be given by;

SORE L1 “Hi#e 1ok B,
SORE #1110 “Hi#ke "l R

2.2 Use of Pipeline

Suppose we execute 100 instructions. Single Cycle Machine:
45 ns/cycle x 1 CPl x 100 inst = 4500 ns. Multi cycle
Machine: 10 ns/cycle x 4.6 CPI (due to inst mix) x 100 inst =
4600 ns. Ideal pipelined machine: 10 ns/cycle x (1 CPI x
100 inst + 4 cycle drain) = 1040 ns

2.3 Pipeline characteristics

Latency: The amount of time that a single operation takes to
execute. The latency of pipelined processor determines how
often dependent instruction may be executed.

Throughput: The rate at which operation get executed
(generally expressed as operations/seconds or
operations/cycles). Throughput > 1/latency, since instruction
execution is overlapped.

CPI: Pipeline yields a reduction in cycles per instruction.

Processor cycle is time required between moving an
instruction one step down the pipeline. 1 processor cycle = 1
CPU clock cycle. The slowest pipeline stage thus determines
the length of the processor cycle. Pipelining aims to reduce
the average execution time per instruction (CPI). Ideally:
CPI pipeline = CPI / # of pipeline stages.

Potential speedup = Number pipe stages. An unbalanced
length of pipe stages reduces speedup.

3. Phases of Pipeline

Instruction execution can be divided into four phases. These
are;

Instruction fetch (IF)

Instruction decode & operand fetch (D)

Execution (EX)

Store (ST)

We used a register transfer notation to describe what happens
in each phase of instruction execution.

3.1 Instruction fetch (IF)

In this phase, the instruction to be executed next is fetched
from memory using PC (program counter) as the address of
the memory location (read the instruction from the memory).
Corresponding location in the (instruction) memory is
accessed and is assigned to the instruction register (IR).

IR <-- Mem [PC];
Next, the program counter is incremented to point to the next
instruction. This is done by adding 1 to the current program

counter. The new value of PC is stored in the NPC register.

NPC <-- PC + 1;

Volume 3 Issue 3, March 2014

Paper ID: 020131078

www.ijsr.net

109

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

3.2 Instruction Decode & Operand Fetch (ID)

Once the Instruction Register is loaded with the instruction,
decoding of that instruction along with operand fetching
starts (decode the instruction and fetch the source
operand(s)). Depending upon the instruction format (R, | or
J), opcode along with the function code fields are used to
decode the instruction. Simultaneously, the two source
operands are fetched using the Rsl and Rs2 field of the
instruction. The fetched operands are stored in two internal
register A and B. As operand fetch takes place even before
the instruction decoding, fetching operand values into A and
B registers take place for all three instruction forms (R, | and
J) even though some instructions may have one or zero
source operands. Simultaneous register fetch is possible due
to the fixed field decoding (source operand fields are always
at the position in all instruction formats). Thus,

A <--Rsl; B <- Rs2;
3.3 Execution (EX)

In this phase, perform the operation specified by the
instruction.

Arithmetic instructions are executed as follows. The
operands (A and B register) for R-format and (A and Imm)
for I-format are sent to the ALU with the appropriate control
signal for performing the arithmetic operation. The control
signals for the ALU and the MUX used to choose the second
operand (between B and Imm) are derived by the control unit
using the opcode and function code fields of the instruction
in IR. Thus,

ALU out<-- A (+)B (forinstruction in R-format)
ALUo_ut<-- A (+) Imm (for instruction in I-format)

Data transfer instructions, only computing the effective
address of the memory location is done in the EX phase. For
example, in case of a LOAD instruction,

LD R2, 8(R1)
the decode and operand fetch phase has fetched the source
register (R1) in A and the displace has been sign extended in
Imm register.

Control instructions (branching (by PC relative address), the
branch target address is calculated by adding the offset
(given in the offset field of the instruction, loaded and sign
extended in the Decode phase in the Imm register, to the
Next Program Counter (NPC) value. That is,

ALU out <-- NPC + Imm

For this, the first input operand is NPC which is Multiplexed
with operand from the A register.

Store (ST) / (result write)

In this phase, for ALU and Load instructions, the result value
is written in the destination register (store the result in the
destination location). For branch instruction, PC is loaded
with the branch target address (calculated in the EX phase)

or NPC depending whether or not the condition specified in
conditional branch instruction is true. For ALU instruction,

Rd <-- ALU_out
For LD instruction
Rd <-- LDR

The computer is controlled by a clock whose period is such
that the fetch, decode, execute, store steps of any instruction
can each be completed in one clock cycle. In the first clock
cycle, the fetch unit fetches an instruction 11 and stores it in
buffer B1 at the end of the clock cycle. In the second clock
cycle, the instructions fetch unit proceeds with the fetch
operation for instruction 12. The decode unit performs the
operation specified by instruction 11, which is available to it
in buffer B1. By the end of the second clock cycle, the
decoding of instruction 11 is completed and instruction 12 is
available. Step execute of I1 is performed by the execution
unit during the third clock cycle, while instruction 13 is being
fetched by the fetch unit.

But in this paper we are going to ignore the hazards takes
place during the pipelining. Therefore the methods for
avoiding pipeline hazards also ignored.

4. Application

The advantages of a pipelining are an increase in throughput
and reduced response time. This processor can be used not
only in traditional computing applications such as desktops,
laptops, workstation etc. but also as a component in another
piece of technology such as either a cell phone, digital
camera, portable digital assistant, household appliances,
automobile antilock brake system and many more.

5. Simulation result

The pipelining is divided into four sub stages such as fetch,
decode, execute, store. The simulation of each stage is done
by using Xilinx ISE and Modelsim simulator and is shown
bellow. The technology schematic for each stage is also
shown. The Verilog HDL can be used to design the each
stage of pipelining.

Volume 3 Issue 3, March 2014

Paper ID: 020131078

WWwWWw.ijsr.net

110

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Figure 4:Waveform and Technology schematic for Fetch(IF)
stage

Figure 5:Waveform and Technology schematic for
Decode(ID) stage

Figure 6:Waveform and Technology schematic for
Execute(EX) stage

=
=
=)
=
3
o
i
[
L
L
¥
=

NOOROD0

poaaaa0annanee0 An0000R00

Figure 7 :aveform and Technology scematic for
Store(ST) stage

6. Conclusion

The pipelining concept takes lot of advantages in many of
the systems. The pipelining has some of the hazards. In this
paper the hazards concept is ignored. The pipelining of
instructions which reduce the CPI, increases the speed of
execution or operation, and also increase throughput of
overall system. This is basic concept of any system and lot of
improvement can be done in pipelining concept to increase
the speed of system. The future scope is to apply the concept
to different embedded systems and we can see how the
performance increases by this concept.

References

[1] Tannu Chhabra, Md Tauheed Khan “VLSI Design of a
16-bit Pipelined RISC Processor”, International Journal
of Electronics and Computer Science Engineering, ISSN
2277-1956/V1N3-1858-1861

Volume 3 Issue 3, March 2014

Paper ID: 020131078

WWwWWw.ijsr.net

111

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

[2] J.L.Hennessy, D.A Patterson.2003, “Computer
Organization and Design: The Hardware/Software
Interface™, 2nd Edition, Morgan Kaufmann.

[3]1D. J. Smith. (2010), “HDL Chip Design*, International
Edition, Doone Publications,

[4]A.S. Tanenbaum. 2000, “Structured Computer
Organization®, 4th Edition, Prentice-Hall

[5] Luker, Jarrod D., Prasad, Vinod B.2001, “RISC system
design in an FPGA", MWSCAS 2001, v2, , p532536.

[6] Computer Organization & Design. David A. Patterson
and John L. Hennessy, ISBN 1-55860-428-6, p 476-501,
525-256.

Author Profile

m Mr. Rakesh M. R received his B.E degree in
; Electronics and Communication from KVVG College of
Fae Engineering Sullia in 2012. Currently he is pursuing
\ 4 M. Tech degree in Electronics at Canara Engineering

College, Mangalore. His areas of interest are VLSI and
Image Processing.

Volume 3 Issue 3, March 2014

Paper ID: 020131078

112

