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Abstract: Cluster analysis is an important process of grouping similar and dissimilar items. Clustering can be done efficiently by the 
help of finding centroid. Centroids are playing major role in efficient clustering. Clustering can be done without any outliers by 
grouping them efficiently based on the centroids. Clustering will be efficient for all kind of inputs. This is the main aim of our paper. We 
give the input in the form of two tables. We can check how efficient is the clustering if the input is in the form of tables. We use a 
algorithm named as Lloyd`s algorithm for making the clustering efficient. We need to find the average mean distance which should be 
minimum in all the cases. For this purpose we use a distance metric named as Earth mover distance metric which finds the mean value 
for all the entries in the table we give. Finally our clustering is analyzed with the performance check in the terms of precision and recall.  
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1. Introduction 

Data mining makes use of ideas, tools, and methods from 
other areas, especially computational area such as database 
technology and machine learning. It is not much concerned 
with all areas in which statisticians are interested. Mining 
essentially assumes that the data have already been collected, 
and is concerned with how to discover its secrets. It is not a 
one short activity, but rather an iterative and interactive 
process. There are clear overlaps between Statistics and Data 
mining. Data mining should be the nontrivial process of 
identifying valid, novel, potentially useful, and ultimately 
comprehensible knowledge from databases such knowledge 
should be useful in making crucial decisions. 
 
They are more generally significant issues of existing and 
future KDD. They hide the shift from data mining to 
knowledge discovery, in particular, blocking the shift from 
hidden pattern mining to actionable knowledge discovery. 
The wide acceptance and deployment of data mining in 
solving complex enterprise applications is thus further 
restrained. Moreover, they are closely related and to some 
extent create a cause-effect relation, which is the 
involvement of domain intelligence contributing to 
actionable knowledge delivery. This paper explores the 
challenges and issues from the following aspects: 
 
 Organizational and social factors surrounding data 

mining applications; 
 Human involvement and preferences in the data mining 

process 
 Actionable knowledge discovery supporting decision-

making actions; 
 Decision-support knowledge delivery facilitating 

corresponding decision-making, 
 Consolidation of the relevant aspects for decision-

support. 
 
Clustering will be efficient for all kind of inputs. Tables can 
also be efficiently clustered with the centroid based 

clustering algorithms. Average mean distance is also found 
for clustering efficiently. 

 
2. Related Works 

2.1 Domain Driven Data Mining 
 
The basic idea of domain driven data mining (DDDM) is as 
follows. On top of the data-centered framework, it aims to 
develop proper methodologies and techniques for integrating 
domain knowledge, human role and interaction, 
organizational and social factors, as well as capabilities and 
deliverables toward delivering actionable knowledge and 
supporting business decision-making action-taking in the 
KDD process. DDDM targets the discovery of actionable 
knowledge in the real business environment. Such research 
and development is very important for developing the next 
generation data mining methodologies and infrastructures. 
Most importantly, DDDM highlights the crucial roles of 
ubiquitous intelligence, including in-depth data intelligence, 
domain intelligence and human intelligence, and their 
consolidation, by working together to tell hidden stories in 
businesses, exposing actionable knowledge to satisfy real 
user needs and business operation decision making. End 
users hold the right to say “good” or “bad” to the mined 
results 

2.2 Ubiquitous Intelligence 

This section have stated the importance of involving and 
consolidating relevant ubiquitous intelligence surrounding 
data mining applications for actionable knowledge discovery 
and delivery. Ubiquitous intelligence surrounds a real-world 
data mining problem. DDDM identifies and categories 
ubiquitous intelligence into the following types. Data 
intelligence reveals interesting stories and/or indicators 
hidden in data about a business problem. The intelligence of 
data emerges in the form of interesting patterns and 
actionable knowledge. There are two levels of data 
intelligence: 
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An early application of the EMD in computer science was to 
compare two grayscale images that may differ due to 
dithering, blurring, or local deformations. In this case, the 
region is the image's domain, and the total amount of light 
(or ink) is the "dirt" to be rearranged. 
 
The EMD is widely used in content-based image retrieval to 
compute distances between the color histograms of two 
digital images. In this case, the region is the RGB color cube, 
and each image pixel is a parcel of "dirt". The same 
technique can be used for any other quantitative pixel 
attribute, such as luminance, gradient, apparent motion in a 
video frame, etc. 
 
More generally, the EMD is used in pattern recognition to 
compare generic summaries or surrogates of data records 
called signatures. A typical signature consists of list of pairs 
((x1,m1), … (xn,mn)), where each xi is a certain "feature" (e.g., 
color in an image, letter in a text, etc.), and mi is "mass" 
(how many times that feature occurs the record). 
Alternatively, xi may be the centroid of a data cluster, and mi 
the number of entities in that cluster. To compare two such 
signatures with the EMD, one must define a distance 
between features, which is interpreted as the cost of turning a 
unit mass of one feature into a unit mass of the other. The 
EMD between two signatures is then the minimum cost of 
turning one of them into the other. 
 
In our paper clustering reappears and we chose specific 
clustering algorithm for clustering that’s based on centroids. 
In the chosen algorithm the centroids will be changing often. 
Centroids can be chosen based on the closest mean of the 
entries of the table. The closest mean will be the minimum 
one. This will be found with the help of Earth mover distance 
formula. 
 
The main Concept introduces a technique of clustering 
efficiently based on centroids for inputs in the kind of tables. 

 
Figure 1: System architecture

 
The systems architect establishes the basic structure of the 
system, defining the essential core design features and 
elements that provide the framework. The system 
architecture provides the whole structure of the work starts 
with the input, which was n number of tables. The tables 
were merged at the first step. We will get n number of 
merged tables. Then from this merged tables we find the 
average mean distance using the formula Earth mover. An 
average mean has been found based in which the clustering 
has been done using the algorithm Lloyd`s. The clustering 
has been done efficiently based on the centroids. Some of the 

following points should be considered in order to efficient 
clustering. 
 
1. The table should contain a limited number of entries. 
2. The entries in the table must be either continuous or 

discrete. 
3. Merge the tables in any one of the criteria which makes the 

process simple. 
4. Use the EMD formula in order to get a closest mean. 
5. The closest mean obtained from the EMD formula must be 

the minimum distance among all the entries in the table.  
 

4. Framework Modules 
 
The framework modules explain the modules that come 
under our proposed work. These modules explain from step 
by step how the cluster forms. The process of creating table, 
comparing and merging the tables, finding the average 
distance mean and forming the cluster are some of the steps 
include in our paper. 

Merging of Tables: Here the tables were created and the 
entries are given. The entries that are given in the table must 
be either discrete or continuous. In case of numeric inputs, 
the input must be considered as continuous as well as 
discrete in means of ranges. In case of alphabetic inputs their 
type was considered as discrete. Then the entries are 
compared in any of the criteria and they are merged. 
 

 
Figure 2: Merging of Tables 

Centroid computation by AMD: Here the centroid of the 
cluster is computed by finding the average mean distance. 
This average mean distance was calculated by means of a 
formula called Earth mover. This mean will be an 
intermediate number that will be easy for finding the cluster 
in the last stage. 
 

EMD0 = 0 
EMDi+1 = ( Ai + EMDi ) - Bi 
TotalDistance = ∑ | EMDi 

Clustering based on centroids: Here clustering is done 
based on centroids. The Cluster process has been upgraded 
with the technique called Lloyd`s algorithm. Here the 
centroid never remains in the same point. The centroid will 
move according to the closest mean found by the EMD. 
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Figure 3: Clustering

Performance analysis: After the clustering has done, the 
performance is analyzed by comparing the existing system. 
Here we are using two basic measures namely precision and 
recall. These measures will be too less on giving continuous 
inputs. 
 

Figure 4: Performance using precision 
 

 
Figure 5: Performance using recall 

 
After analyzing the performance using the measures 
precision and recall, the response time is measured. The 
response time will be very less indicating our clustering 
algorithm which is based on centroids is very efficient. 

 
 
According to the graph we obtain for the response time, we 
will get large response in less time. As time increases the 

response get lower. As the input was given in the form of 
tables, the clustering process takes place efficiently and we 
find clustering works efficiently which is based in clustering.  

5. Future Work 
 
Accordingly, we have concluded that when input is given in 
the form of tables clustering process works efficiently. We 
derived a clustering algorithm that is based on centroids 
which is working efficiently. In future, we can try by giving 
another input. 

 
6. Conclusion
 
This paper presented a novel algorithm for extracting 
actionable clusters using Lloyd`s clustering algorithms. The 
clusters are of different size and different density. The 
proposed algorithm used one additional centroid, the distance 
measurement depends on the density of data objects from all 
clusters mean. Also this algorithm uses another measure to 
find the average mean distance using EMD. These 
experimental results demonstrated that our scheme could do 
better than the traditional K-means algorithm. While our 
proposed algorithm solve the problems when clusters are of 
differing Sizes and Densities, the traditional K-means failed. 
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