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Abstract: Bacterial foraging optimization algorithm (BFOA) has been widely accepted as a global optimization algorithm of current 
interest for optimization and control. BFOA is inspired by the social foraging behavior of Escherichia coli. BFOA has already drawn
the attention of researchers because of its efficiency in solving real-world optimization problems arising in several application domains. 
Simulated annealing (SA) is a method for solving unconstrained and bound-constrained optimization problems. The method models the 
physical process of heating a material and then slowly lowering the temperature to decrease defects, thus minimizing the system energy. 
In present paper, a detailed explanation of this algorithm is given. Comparative analysis of BFOA with Simulated Annealing (SA) is 
presented.
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1. Introduction
 
Optimization problems defined by functions for which 
derivatives are unavailable or available at a prohibitive cost 
are appearing more and more frequently in computational 
science and engineering. Increasing complexity in 
mathematical modeling, higher sophistication of scientific 
computing, and abundance of legacy codes are some of the 
reasons why derivative-free optimization is currently an area 
of great demand.  
 
In many physical applications, the true models or functions 
being optimized are extremely expensive to evaluate but, 
based e.g. on simplified physics or mesh coarsening, there 
are often surrogate models available, less accurate but 
cheaper to evaluate. In these circumstances, one would 
expect to design an optimization framework capable of 
extracting as much information as possible from the 
surrogate model while parsimoniously using the fine, true 
model to accurately guide the course of the optimization 
process. [1]  
 
To solve the optimization problem efficient search or 
optimization algorithms are needed. There are many 
optimization algorithms which can be classified in many 
ways, depending on the focus and characteristics. 
Optimization algorithms can also be classified as 
deterministic or stochastic. If an algorithm works in a 
mechanical deterministic manner without any random nature, 
it is called deterministic. For such an algorithm, it will reach 
the same final solution if we start with the same initial point. 
Hill-climbing and downhill simplex are good examples of 
deterministic algorithms. On the other hand, if there is some 
randomness in the algorithm, the algorithm will usually 
reach a different point every time the algorithm is executed, 
even though the same initial point is used. 
 
Search capability can also be a basis for algorithm 
classification. In this case, algorithms can be divided into 
local and global search algorithms. Local search algorithms 

typically converge towards a local optimum, not necessarily 
(often not) the global optimum, and such an algorithm is 
often deterministic and has no ability to escape from local 
optima. Simple hill-climbing is such an example. On the 
other hand, for global optimization, local search algorithms 
are not suitable, and global search algorithms should be 
used. A simple strategy such as hill-climbing with random 
restarts can turn a local search algorithm into an algorithm 
with global search capability. In essence, randomization is an 
efficient component for global search algorithms. 
 
Obviously, algorithms may not exactly fit into each category. 
It can be a so-called mixed type or hybrid, which uses some 
combination of deterministic components with randomness, 
or combines one algorithm with another so as to design more 
efficient algorithms. [3] 
 
1.1. Different type of Derivative free optimization 
 
1) Genetic Algorithm 
2) Simulated Annealing 
3) Random Search Method 
4) Swarm Optimization 
5) Ant Colony Algorithm 
6) Bacterial Foraging 

 
Natural selection tends to eliminate animals with poor 
“foraging strategies” (methods for locating, handling, and 
ingesting food) and favor the propagation of genes of those 
animals that have successful forging strategies since they are 
more likely to enjoy reproductive success (they obtain 
enough food to enable them to reproduce). After many 
generations, poor foraging strategies are either eliminated or 
shaped into good ones (redesigned). Logically, such 
evolutionary principles have led scientists in the field of 
”foraging theory” to hypothesize that it is appropriate to 
model the activity of foraging as an optimization process: A 
foraging animal takes actions to maximize the energy 
obtained per unit time spent foraging. 
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2. Basic Details: Bacterial Foraging 
Technology

 
2.1. Foraging: Element of Foraging Theory 
 
Foraging theory is based on the assumption that animals 
search for and obtain nutrients in a way that maximizes their 
energy intake E per unit time T spent foraging. Hence, they 
try to maximize a function like  

 
(or they maximize their long-term average rate of energy 
intake). Maximization of such a function provides nutrient 
sources to survive and additional time for other important 
activities (e.g., fighting, fleeing, mating, reproducing, 
sleeping, or shelter building). Optimal foraging theory 
formulates the foraging problem as an optimization problem 
and via computational or analytical methods [2]. 
 
2.2. Search Strategies for Foraging 
 
Some animals are “cruise” or “ambush” searchers. For the 
cruise approach to searching, the forager moves 
continuously through the environment, constantly searching 
for prey at the boundary of the volume being searched (tuna 
fish and hawks are cruise searchers). In ambush search, the 
forager (e.g., a rattlesnake) remains stationary and waits for 
prey to cross into its strike range [2]. The search strategies of 
many species are actually between the cruise and ambush 
extremes. 
 
2.3. Bacterial Foraging: E.coli 
 
The E. coli bacterium has a plasma membrane, cell wall, and 
capsule that contains the cytoplasm and nucleoid (Figure 1). 
The pili (singular, pilus) are used for a type of gene transfer 
to other E. coli bacteria, and flagella (singular, flagellum) are 
used for locomotion [7]. The cell is about 1 μmin diameter 
and 2 μm in length [1]. The E. coli cell only weighs about 1 
picogram and is about 70% water. Salmonella typhimurium 
is a similar type of bacterium [6]. 
 
2.4. Swimming and Tumbling via Flagella 
 
Locomotion is achieved via a set of relatively rigid flagella 
that enable the bacterium to swim via each of them rotating 
in the same direction at about 100-200 revolutions per 
second (in control systems terms, we think of the flagellum 
as providing for actuation). Each flagellum is a left-handed 
helix configured so that as the base of the flagellum (i.e., 
where it is connected to the cell) rotates counterclockwise, as 
viewed from the free end of the flagellum looking toward the 
cell, it produces a force against the bacterium so it pushes the 
cell. 

 
Figure 1: Bacterial foraging E.Coli [7] 

 
An E. coli bacterium can move in two different ways; If the 
flagella rotate clockwise, each flagellum pulls on the cell, 
and the net effect is that each flagellum operates relatively 
independently of the others, and so the bacterium “tumbles” 
about (i.e., the bacterium does not have a set direction of 
movement and there is little displacement See Fig. 2. (a) [4]) 
If the flagella move counterclockwise, their effects 
accumulate by forming a bundle (it is thought that the bundle 
is formed due to viscous drag of the medium), and hence 
they essentially make a composite propeller and push the 
bacterium so that it runs (swims) in one direction (see Fig. 2 
(a) [5]). 
 

 
Figure 2: Swimming, tumbling and chemotactic behavior of 

E coli 
 
3. Bacterial Foraging Optimization Algorithm 

3.1. Steps for BFOA 
 
a) Chemotaxis:
This process simulates the movement of an E.coli cell 
through swimming and tumbling via flagella. Suppose θi(j, 
k, l) represents the ith bacterium at jth chemotactic, kth 
reproductive, and lth elimination–dispersal step. C (i) is a 
scalar and indicates the size of the step taken in the random 
direction specified by the tumble (run length unit). Then, in 
computational chemotaxis, the movement of the bacterium 
may be represented by 
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where Δ indicates a unit length vector in the random 
direction. 
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b) Swarming:
Interesting group behavior has been observed for several 
motile species of bacteria including E.coli and S. 
typhimurium, where stable spatiotemporal patterns 
(swarms) are formed in semisolid nutrient medium. A 
group of E.coli cells arrange themselves in a traveling ring 
by moving up the nutrient gradient when placed amid a 
semisolid matrix with a single nutrient chemo-effecter. 
The cells when stimulated by a high level of succinate 
release an attractant aspartate, which helps them to 
aggregate into groups and, thus, move as concentric 
patterns of swarms with high bacterial density [8]. 

c) Reproduction:
The least healthy bacteria eventually die while each of the 
healthier bacteria (those yielding lower value of the 
objective function) asexually split into two bacteria, which 
are then placed in the same location. This keeps the swarm 
size constant. 

d) Elimination and Dispersal: 
To simulate this phenomenon in BFOA, some bacteria 
are liquidated at random with a very small probability 
while the new replacements are randomly initialized over 
the search space. 

4. Simulated Annealing
 
Simulated annealing is a technique for combinatorial 
optimization problem, such as minimizing functions of very 
many variables. Because many real-world design problems 
can be cast in the form of such optimization problem, there is 
intense interest in general techniques for their solution. 
Simulated annealing is one such technique of rather recent 
vintage with an unusual pedigree: it is motivated by an 
analogy to the statistical mechanics of annealing in solids. 
To understand why such physics problem is of interest, 
consider how to coerce a solid into a low energy state. [3] 
 
A low energy state usually means a highly ordered state, 
such as a crystal lattice. Simulated annealing techniques use 
an analogous set of “controlled cooling” operations for 
nonphysical optimization problems, in effect transformation 
a poor, unordered solution into a highly optimized, desirable 
solution. Simulated annealing offers an appealing physical 
analogy for the solution of optimization problems and more 
importantly, the potential to reshape mathematical insights 
from the domain of physics into insights for real 
optimization problem. 
 
5. Example and Simulation

5.1. Function Optimization via Bacterial Foraging 
 
As a simple illustrative example [2], we use the algorithm to 
try to Find minimum of function in Figure 4 ([15, 5] is the 
global minimum point, [20, 15] is a local minimum). 
Standard ideas from optimization theory can be used to set 
the algorithm parameters. 
 
5.2. Simulation experiment 
 
A function to be optimized is created with following 
MATLAB program:  

function fposition=Live_fn(x) 
p=0; q=0; 
for k=1:5 
p=p+k*cos((k+1)*x(1)+k); 
q=q+k*cos((k+1)*x(2)+k); 
end 
fposition=p*q+(x(1)+1.42513)^2+(x(2)+.80032)^2; 

 
Figure 3: Function with multiple extremes point 

 
The problem of optimization can be solved by two methods: 
 
 Bacteria foraging optimization algorithm 
 Simulated Annealing 
 
Simulated annealing methods are methods proposed for the 
problem of finding, numerically, a point of the global 
minimum of a function defined on a subset of a k-
dimensional Euclidean space. The motivation of the methods 
lies in the physical process of annealing, in which a solid is 
heated to a liquid state and, when cooled sufficiently slowly, 
takes up the configuration with minimal inner energy. Some 
of the literature, reports surprisingly good results when 
applying simulated annealing to difficult problems. The 
description of the results is often short on detail; not the 
number of steps in the method, but computer time is reported 
and the behavior of the function minimized, the position of 
local minima is difficult to ascertain.  
 
As compared to that in Bacteria foraging optimization 
algorithm, we observe the behavior of the bacteria tumbling 
and swimming is expressed as chemotaxis equation which 
defines the movement of the bacteria. There is a swarming 
characteristic of the bacteria which is taken into account, 
where in the bacteria come together in large numbers in 
semisolid nutrient medium. On the basis of the above 
explanations, we observe that the Bacteria foraging 
algorithm differs from simulated annealing. Simulation 
results using both methods are presented in Fig. 4 and Fig. 5. 
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Figure 4: BFOA results 

 

 
Figure 5: Fitness function plot by Simulated Annealing 

 
5.3. Comment
 
We can see form the above results that the average fitness 
value for a simulated annealing algorithm is -147.270. 
According to the fitness function selected, lower the value 
better the generation. The best value of the fitness function 
achieved by bacterial foraging algorithm is -186.565 which 
is very good compare to simulated annealing. We can see 
from the above graphs of BFO that convergence to the 
minimum point occurs in about four generations while in 
case of SA after execution of around 100 generations we get 
minimum of a function. A comparative analysis of both 
algorithms is presented in the following table: 
 

Table 1: Comparative analysis of BFOA and SA 
S. No. Factor Bacterial Foraging 

Algorithm
Simulated
Annealing

1. Accuracy More Less 
2. Fitness Function Value -186.565 -147.2703 
3. Time 1.5340 sec 3 sec 
4. Optimum point -1.2871 

-0.7281 
-1.425 
-7.081 

6. Conclusion and Future Work 
 
From above comparative data one can easily understand that 
Bacteria foraging optimization algorithm technique is better 
than the simulated annealing. Thus Bacterial Foraging 
algorithm, explains social foraging, Simulated annealing 

which thus makes it imperative to analyses strategies 
required for Global Optimization. Optimal Bacterial 
Foraging theory uses computational or analytical methods to 
provide an optimal foraging policy that specifies how 
foraging decisions are made. Hence the potential uses of 
Biomimcry of Bacterial Foraging optimization techniques 
are to develop adaptive controllers & co-operative control 
strategies for autonomous vehicles. 
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