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1. Introduction 
 
In this paper, a new class of maps called generalized ζ*-closed 
(briefly, gζ*-closed) maps have been introduced and also we 
obtain some properties of gζ*-closed maps. 
 
Definition 1.1 
 
A subset A of a space  is called 
 

i.  -open set [1] if  
ii. a generalized closed set [2](briefly g-closed) if  

whenever  and  is open in  
iii. a generalized #α-closed set [3](briefly g#α-closed) if 

 whenever  and  is g-open in 
 

iv. a #generalized α-closed set [4](briefly #gα-closed) if 
 whenever  and  is a g#α-open in 

 
v. a generalized ζ*-closed set [5](briefly gζ*-closed) if 

 whenever  and  is a #gα-open in 
 

 
The complement of above mentioned closed sets are their 
respective open sets. 
 
Definition 1.2 
 
A map  is called 
 

i. g-continuous [6] if  is g-closed of  for every 
closed set V of  

ii. g#α-continuous [3] if  is g#α-closed in  for 
every closed set V of  

iii. #gα-continuous [4] if  is #gα-closed in  for 
every closed set V of  

iv. gζ*-continuous[5] if  is gζ*-closed in  for 
every closed set V of  

v. #gα-irresolute[4] if  is #gα-closed in  for 
every #gα-closed set V of  

 
(i) gζ*-irresolute [5] if  is gζ*-closed in  for every 
gζ*-closed set V of  
 
2. gζ*-closed maps and gζ*-open maps 
 
In this section, we introduce the concepts of gζ*-closed maps 
and gζ*-open maps in topological spaces. 
 
Definition 2.1 
 
Let X and Y be two topological spaces. A map 

 is called generalized ζ*-closed (briefly, gζ*-
closed) map if the image of every closed set in  is gζ*-
closed in  
 
Theorem 2.2 
 
Every closed map is gζ*-closed map, but not conversely. 
 
Proof:  
 
Let  is a closed map and V be a closed set in 

,then  is closed in  and hence gζ*-closed 
in . Thus  is gζ*-closed. 
 
The converse of the above theorem need not be true as seen 
from the following example. 
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Example 2.3 
 
Consider X=Y= {a, b, c} with topologies  = {X, , {a}, 
{a,b}} and  = {Y, ,{a}}. Let  be the 
identity map. Then this function is gζ*-closed but not closed, as 
the image of closed set {c} in  is {c} which is not open 
set in . 
 
Theorem 2.4 
 
A map  is gζ*-closed if and only if for each 
subset S of Y and for each open set U containing  there 
is a gζ*-open set V of Y such that  and  
 
Proof: 
 
Suppose  is gζ*-closed. Let S be a subset of Y and U be an 
open set of X such that ,  is gζ*-
open set containing S such that . 
 
Converse: 
 
Suppose that F is a closed set of X. Then 

 and  is open. By hypothesis, 
there is a gζ*-open set V of Y such that  and 

 Therefore  hence 
 which 

implies , since  is gζ*-closed,  is gζ*-
closed and hence  is gζ*-closed map. 
 
Theorem 2.5 
 
If a map  is continuous and gζ*-closed and A 
is gζ*-closed set of X, then  is gζ*-closed in Y. 
 
Proof:  
 
Let  where U is open set in Y, since  is 
continuous,  is an open set containing A. Hence 

 as A is gζ*-closed, since  is gζ*-closed, 
 is gζ*-closed, U is an open set which implies 

 and hence , so  is 
gζ*-closed set in Y. 
 
Corollary 2.6 
If a map  is continuous and closed and A is 
gζ*-closed set of X, then  is gζ*-closed in Y. 
 
Corollary 2.7 
If a map  is gζ*-closed and A is closed set of 
X, then  is gζ*-closed. 
 
 
 
 

Corollary 2.8 
 
If a map  is gζ*-closed and continuous and A 
is gζ*-closed set of X, then  is continuous and gζ*-
closed. 
 
Proof: 
 
Let F be a closed set of A then F is gζ*-closed set of X, by the 
theorem  is gζ*-closed (Theorem 2.8) hence  
is gζ*-closed set of Y. Here  is gζ*-closed and also 
continuous. 
 
Definition 2.9 
 
A space X is said to be normal if for every two disjoint closed 
subsets A and B of X, there exists two disjoint #gα-open sets U 
and V such that  and . 
 
Theorem 2.10 
 
If  is a continuous, gζ*-closed map from a 
normal space X onto a space Y, then Y is normal. 
 
Proof: 
 
Let A,B be two disjoint closed sets of Y, then  
are disjoint closed sets of X, since X is normal, there are two 
disjoint open sets U,V in X such that  and 

, since  is gζ*-closed by theorem 2.2 , there are 
gζ*-open sets G,H in Y such that ,  and 

 and since U,V are disjoint open sets 
-int(G) and -int(H) are disjoint open sets since G is open, A 

is closed and , -int(G) and H is open set is closed 
and  then -int(H). Hence Y is normal. 
 
Theorem 2.11 
 
If  is closed map and  is 
gζ*-closed map, then the composition  is 
gζ*-closed map. 
 
Proof: 
 
Let F be any closed set in , since  is closed map,  is 
closed set in  Since g is gζ*-closed map,  is gζ*-
closed set in . That is  is gζ*-closed 
and hence  is gζ*-closed map. 
 
Remark 2.12 
 
If a map  is gζ*-closed map and 

 is closed map, then the composition need 
not be gζ*-closed map as seen from the following example. 
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Example 2.13 
 
Consider X = Y = Z = {a, b, c},  = {X, , {a}, {b}, {a,b}},  
= {Y, , {a},{b, c}} and  = {Z, ,{b},{c},{b,c}}. Let 

 be the identity map and  is 
defined by and . Then  is gζ*-
closed map and  is a closed map. But their composition 

 is not gζ*-closed map, since for the 
closed set {c} in , but 

 which is not gζ*-
closed in  
 
Theorem 2.14 
 
Let ,  be two topological spaces, and  be 
topological spaces where “Every gζ*-closed subset is closed”. 
Then the composition  of the gζ*-closed 
maps  and  is gζ*-closed. 
 
Proof: 
 
Let A be a closed set ofLet A be a closed set ofLet A be a closed set ofLet A be a closed set ofLet A be a closed set ofLet A be a closed set ofLet A be a closed set ofLet A be a closed set of . Since  is gζ*-closed,  is 
gζ*-closed in . Then by hypothesis,  is closed. Since 

 is gζ*-closed,  is gζ*-closed in 
and . Therefore  is gζ*-closed. 

 
Theorem 2.15 
 
Let  and  be two mappings 
such that their composition  be gζ*-
closed mapping. Then the following statements are true. 
 
(i) If  is continuous and surjective, then  is gζ*closed. 
(ii) If  is gζ*-irresolute and injective, then  is gζ* closed.
 
Proof: 
 
(i)  Let A be a closed set of Let A be a closed set of . Since  is continuous, 

 is closed in  and since  is gζ*-
closed,  is gζ*-closed in . That is  is 
gζ*-closed in , since  is surjective. Therefore  is gζ*-
closed. 
(ii)  Let B be a closed set of Let B be a closed set of . Since  is gζ*-closed, 

 is gζ*-closed in is gζ*-closed in  Since  is gζ*-irresolute, 
 is gζ*-closed set in . That is  is gζ*-

closed in , since  is injective. Therefore  is gζ*-closed. 
 
Theorem 2.16 
 
If  is an open, continuous, gζ*-closed 
surjection and  for every gζ*-closed set in , 
where X is regular, then Y is regular. 
 
 

Proof: 
 
Let U be an open set in Y and . Since  is surjection, 
there exists a point  such that . Since X is 
regular and  is continuous, there is an open set V in X such 
that  Here, 

. Since  is gζ*-closed, 
 is gζ*-closed set contained in the open set U. By 

hypothesis,  and 
. From (i) and (ii), we have 

 and  is open, since  is open. 
Hence Y is regular. 
 
Definition 2.17 
 
Let X and Y be two topological spaces. A map 

 is called generalized ζ*- open (briefly, gζ*-
open) map if the image of every open set in  is gζ*-open 
in  
 
Theorem 2.18 
 
Every open map is gζ*-open map, but not conversely. 
 
Proof: 
 
Let  is an open map and V be an open set in 

, then  is open in  and hence gζ*-open 
in . Thus  is gζ*-open. 
 
The converse of the above theorem need not be true as seen 
from the following example. 
 
Example 2.19 
 
Consider X=Y= {a, b, c} with topologies  = {X, , {a}, 
{a,b}} and  = {Y, ,{a,b}}. Let  be the 
identity map. Then this function is gζ*-open but not open, as 
the image of open set {a} in  is {a} which is not open set 
in . 
 
Theorem 2.20 
 
For any bijection map , the following 
statements are equivalent. 
 
(i)  is gζ*-continuous. 
(ii)  is gζ*-open map and  
(iii)  is gζ*-closed map. 
 
Proof: 
 
(i) (ii) Let U be an open set of(ii) Let U be an open set of(ii) Let U be an open set of(ii) Let U be an open set of(ii) Let U be an open set of . By assumption, ( -1)-1 
(U) =  (U) is gζ*-open in  and so  is gζ*-open. 
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(ii)  (iii) Let F be a closed set of . Then  is open set 
in . By assumption,  is gζ*-open in  and 
therefore  is gζ*-closed in . Hence  is gζ*-closed. 
(iii)  (i) Let F be a closed set of . By assumption,  
is gζ*-closed in . But  = ( -1)-1 (F) and therefore -1 
is continuous. 
 
Theorem 2.21 
 
A map  is gζ*-open if and only if for any 
subset S of  and any closed set of  containing -

1(S), there exists a gζ*-closed set K of  containing S such 
that  
 
Proof: 
 
Suppose  is gζ*-open map. Let and F be a closed set of 

 such that . Now  is an open set 
in . Since  is gζ*-open map,  is gζ*-open set 
in . Then  is a gζ*-closed set in . 
Note that  implies  and 

.  
 
That is  
 
For the converse, let U be an open set ofFor the converse, let U be an open set of . Then 

c)  and  is a closed set in . By 
hypothesis, there exists a gζ*-closed set K of  such that 

c  and  and so c. Hence 
c  which implies . 

Since  is a gζ*-open,  is gζ*-open in  and 
therefore  is gζ*-open map. 
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