
International Journal of Science and Research (IJSR)
ISSN (Online): 2319‐7064

Volume 3 Issue 2, February 2014
www.ijsr.net

An Automated Testing Strategy Targeted for Efficient
Use in the Consulting Domain

Annakkodi P. S1, Mohanapriya. V2

1Research Supervisor, Head, Department of Information Technology, Sri Ramalinga Sowdambigai College of Science & Commerce,
Coimbatore-109, Tamil Nadu, India

2Research Scholar, Department of Computer Science, Sri Ramalinga Sowdambigai College of Science & Commerce, Coimbatore-109, Tamil
Nadu, India

Abstract: Test automation can decrease release cycle time for software systems compared to manual test execution. Manual test execution
is also considered inefficient and error-prone. However, few companies have gotten far within the field of test automation. This thesis
investigates how testing and test automation is conducted in a test consulting setting. It has been recognized that low test process maturity is
common in customer projects and this has led to equally low system testability and stability. The study started with a literature survey which
summarized the current state within the field of automated testing. This was followed by a consulting case study. In the case study it was
investigated how the identified test process maturity problems affect the test consulting services. The consulting automated testing strategy
(CATS) been developed to meet the current identified challenges in the domain. Customer guidelines which aim to increase the test process
maturity in the customer organization have also been developed as a support to the strategy. Furthermore, the study has included both
industrial and academic validation which has been conducted through interviews with consultant practitioners and researchers.

Keywords: Consulting, Testing, Requirements, Process Improvement.

1. Introduction

Software testing is a practice that is neglected in many
development projects due to budget and time constrains. In
the test consulting domain, the testers and test managers
change domains frequently due to large sets of customers
involved. This chapter will present the motivation for this
thesis project followed by the aims and objectives and
research questions. The research methodology will be
briefly introduced followed by an outline for the rest of the
report.

1.1 Back Ground of the Study

Executing manual test cases several times is inefficient and
error-prone and by automating these, the tests can be
improved in later development phases, resources may be
freed and the release cycle time may be decreased. Acting as
a consultant in the test consulting domain infers some
special issues that need to be handled in regards to the
automation of the manual test cases in the customer
development projects. The development process maturity
often differ between the customers and with this in mind,
the automated test procedures, methods and approaches
used by the consulting firms must be adapted to suit the
different customer domains and the distinct projects within
these domains.

If automated testing is not considered in the architecture and
design, it will be decrease the possibilities of automating the
test cases in the later phases. This can pose problems for a
test consultant that arrives in late phases of development
where these items are hard to change for the sake of

automating the test cases. As mentioned by Keller, the
success of the automated tests are dependent on the test
automation strategy that describes which test types that are
to be performed, such as for example, integration tests,
reliability tests and functional tests.

There are development methodologies that support
automated testing, such as test driven development. Such
practices can in fact reduce the defects in the software
products and this is partly because it enables automated test
cases to be written before the actual problem solution
implementation. However, the consulting domain differs
from traditional software development in the sense the
consultants arrive in various phases of development
depending on the contract with the given customer. It would
hence be an advantage if the consultant could guide the
early development phases in a direction which would
facilitate automated testing in the later phases when the
consultant arrives

Automated testing is not the best verification technique for
every single scenario, many other factors needs to be
considered before making the decision to automate the test
case such as what artifact that are to be tested, how many
times the test are to be run and how long time it will take to
implement the test suite. However, having them gives the
advantage of being able to run them more frequent and
improves the quality of the test cases.

1.2 Aims and Objectives

This aim of this thesis project was to report on the
difficulties within the test consulting domain in regards to

Paper ID: 02013981 402

International Journal of Science and Research (IJSR)
ISSN (Online): 2319‐7064

Volume 3 Issue 2, February 2014
www.ijsr.net

the automated test methods and processes used. With this
information in mind, an automated testing strategy and
customer guidelines has been constructed with the aim of
making these methods and processes more adaptable
between different customer domains. The objectives which
were formed prior to the study are primarily described in the
list below:

1. Identify which automated testing methods, approaches
and strategies that are used in the consulting domain.

2. Identify how these automated testing methods,
approaches and strategies differ from the corresponding
ones used by standard development companies and the
ones considered state-of-the-art.

3. Construct a theoretical hybrid strategy for automated
testing, targeted for efficient adaptation in the
consulting domain, with guidelines for easier adoption.

4. Validate the adaptation efficiency of the strategy in the
consulting domain.

5. Validate the feasibility and cost effectiveness of the
proposed strategy in the consulting domain

2. Automated Software Testing

In every large software development project, there exist
several defects in artifacts such as requirements,
architecture, design in addition to the source code, each of
which decrease the quality of the product. Software testing
practices are used to ensure quality of software items by
finding these defects. The overall development cost can be
decreased by finding these defects early in the development
process rather than later. For example, consider performing
a bug fix to a set of requirements after the implementation
has been completed. When performing such change, the
already implemented source code may now be based on an
incorrect set of requirements. This means that the existing
functionality may not be needed after all, rendering the
development effort useless

Software testing can roughly be divided into several
methods and levels each of which has distinct responsibility
of testing. The methods include black-box and white-box
testing which is discussed below. Software levels include
unit, integration, system and validation testing each of
which will be introduced in Section 2.2

Unit Testing: This level verifies if the implementation of
the individual modules described by the detailed design
behaves in an acceptable manner. However, it could also be
used to ensure the correct behavior of the units by using a
black-box approach.

Integration Testing: The integration testing level focus on
the high level design which usually contains cooperating
architectural artifacts. This means that this level verifies if
the implemented interactions between modules are correct.

System Testing: The system testing level ensures that the
complete system is behaving in acceptable manner. It acts
with the system specification as the basis and the input
source to this test level comes from the developers.

Acceptance Testing: This testing is usually done by the
end-user or customer and verifies if the requirements are
fulfilled by the implementation with the requirements
specification as a basis. The main difference between this
level and the system testing level is that the source of input
comes from the customer instead of the developers.

3. Automated Testing Opportunities

Manual execution of test cases is considered inefficient and
error-prone and it is often possible to increase the efficiency
by automating these which also relives the workload of the
testers. By introducing automated test cases to the
development process, the testing cost also decrease and
some of the tedious manual labor is avoided. However, in
addition to the opportunities it provides, there are several
challenges as well. It does take some time to develop these
automated test cases and several considerations should be
taken before their implementation. If test cases are to run
several times which is the case in for example regression
testing, it may prove beneficial to automate them so that the
resources needed for the re-run can be put to better use.

Even with the introduction of automation it is most often
impossible to achieve full test coverage due to the large
amount of different states and branches that a software
product may enter. This introduces the issue that handles
which artifacts that are important enough to be considered
for coverage of the automated test cases. However, it should
be noted that striving for full coverage is not always the
most appropriate measure for fault detection. This is due to
the fact that the defects often have different severity while
the test cases differ in terms of cost.

3.1 Reuse

In most development stages, there has been a focus of
component reuse which has several advantages. First of all,
the component can be written once and used many times
which saves development effort. It also has quality benefits
because the component may be refined and improved over
time. This practice can be used for requirements, design
artifacts and source code components and it can also be
applied to the automated test cases. With this kind of reuse,
the benefits discussed such as quality refinement is
transferred to the test cases as well and first-class test cases
is very important in testing. For example, with poor quality,
false positives may be found instead of real defects which
can lead to unnecessary manual labor. This is an issue that
can be remedied with sound reuse.

Paper ID: 02013981 403

International Journal of Science and Research (IJSR)
ISSN (Online): 2319‐7064

Volume 3 Issue 2, February 2014
www.ijsr.net

Figure 1: Reuse Strategy Example

To get a reusable quality test suite it could be appropriate to
extend the normal test case development process briefly
described by Keller et al. Figure 2 gives an example of how
the test suite can be improved along sides the ordinary
development. It contains the following stages.

Planning: This phase includes consulting the test strategy to
see if the test case chosen from the test suite corresponds to
the current testing goals.

Maintenance: Often, when test cases are brought from the
test suite, they need some maintenance so that it can be
adapted to the current setting. This state takes care of the
possible modifications needed.

Test Execution: In this stage, the test is executed in order to
find eventual defects and more importantly for the reuse
issue, return test data to the next stage.

Analysis: Analysis in regards to test reuse is concerned with
how the test case performed, if it fulfilled its purpose. Some
measurements may be needed, depending on the current
goals of the test strategy

4. Relevant Methods

There are numerous frameworks available that covers
different criterions. Several testing frameworks are available
which supports the automation of test cases, not only to
automate the test cases themselves but also to adapt other
frameworks to fit several application domains. This section
will introduce frameworks, methods and strategies that are
considered to be useful primarily in the test consulting
domain where the testing criteria often change

4.1 JUnit

JUnit is an executable testing framework that enables
developers to write automated test cases for classes,
methods and packages they have written using the Java
programming language. In organizations where Unit testing
is adapted, the JUnit and other xUnit frameworks are the
ones that are primarily used. This can be traced to their early
arrival to the development community but also to the simple
structure of the frameworks. The benefits imposed by unit
testing frameworks have been recognized by several IDE
vendors. Net beans and Eclipse for example, has built-in
support for JUnit which makes test case creation for

particular classes, packages and individual methods a couple
of clicks away.

As mentioned, the test aims for validation of the expected
output for a unit and a failing test case is showed in
Example 5 where the test described in Example 4 has failed.
As can be seen in the JUnit GUI illustration in the example,
a failure trace is given so that the test case can be examined
and thereby the failing source code unit. In this case, the
code returned null instead of the expected User instance

5. Consulting Automated Testing Strategy
(CATS)

The automated testing strategy is developed for use by
consultants that primarily deal with test automation in
software development projects but some parts of the
strategy may be useful for manual testing as well.

5.1 Strategy concepts

Strategy pointers in the following sections are distinct tips
that can be applied in different phases of the testing project
with the intent to increase the efficiency of the testing
practices. The pointers can be applied independently of each
other, depending on the parameters of the current
development project and organization. As for the different
phases of the strategy, these are not to be confused with the
phases of the used development methodology since the

Paper ID: 02013981 404

International Journal of Science and Research (IJSR)
ISSN (Online): 2319‐7064

Volume 3 Issue 2, February 2014
www.ijsr.net

strategy phases are independent of the development
methodology. The main concepts of these phases are to
increase software testability and stability, increase the
effectiveness of the test execution and to improve the
strategy and customer guidelines with the execution results
as the input source. The pointers are structured so that the
test consultant can assess the pointers independently and
choose which pointers that applies in the current
development phase.

6. Customer Guidelines

As a complement to the automated testing strategy
developed for use by test consultants, the following
guidelines is intended for the customers and provide
directions towards more testable and stable software
applications in the customer projects. The guidelines are
divided into so called pointers and each of these gives a
specific tip of what should be done to facilitate the system
and acceptance test. These pointers are intended to be
implemented by the developers in the customer projects and
be motivated by the consultant test manager by using the
motivation sections for each pointer. As previously
described, without system testability and stability in the
release, the lead time for the consultant testers will increase
which in turn decrease the efficiency of the system and
acceptance test. The guidelines has-been designed based on
consultant experience and empirically evaluated studies
which prove their usefulness in development projects.
Adoption of the pointers will increase the system testability
and stability in the development projects and this will
maximize the return of investment of the consulting services
when the contract has been signed for the system and
acceptance test.

7. Discussion

This section will provide a discussion of the perceived
applicability of the proposed strategy and guidelines in a
live consulting setting. Since only static validation has been
collected, the discussion will be based on the opinions of the
consultants at Testway, the opinions of one of their
customers and the opinions of the thesis author.

8. Conclusion

The consulting automated testing strategy (CATS) along
with its supporting customer guidelines was developed for
consulting domains where the practitioners act in changing
application environments. CATS are divided into three steps
where the first step targets the system testability and
stability, a step which should be done prior to the actual test
automation. The second step handles issues that should be
taken care of in the test execution phase. As for the final
step of CATS, it is focused on strategy and customer
guideline improvements. Both CATS and the guidelines was
developed in cooperation with a test consulting firm where

it was recognized that the most common challenges is
related to requirements engineering practices and early
verification activities in the customer projects.

9. Future Work

Only static validation has been performed through
interviews within the consulting firm, relevant customer of
this firm and researchers in academia. It would be
appropriate for future researchers to assess the strategy and
guidelines through dynamic validation by letting consulting
customers use the guidelines before the consultant starts the
assignment using the automated strategy. This way, an
eventual increase in quality could be monitored and
documented which would prove the worth of this study as
well.

Reference

[1] Hayes, L. (1995). The Automated Testing Handbook.
The Software Testing Institute, Texas

[2] Aurum, A., Peterson, H., &Wohlin, C. (September
2002). State-of-the-Art: Software Inspections after 25
Years. Software Testing Verification and Reliability

[3] Bach, J. (2001). James Bach on Explaining Testing to
Them. Software Testing &Quality Engineering

[4] Borland. (2007). Automated Software Regression
Testing & Functional Software Testing - from Borland.
Retrieved May 22, 2007

[5] Edwards, S. H. (2001). A Framework for Practical,
Automated Black-Box Testing of Component-Based
Software. Software Testing, Verification and
Reliability.

Author Profile

Mohanapriya. V received her BCA and MCA
from Vivekanandha College of Engineering
Affiliated to Anna University, Chennai, Tamil
Nadu, India in 2007 and 2009 respectively.
Currently pursuing her M.Phil in Computer

Science at Sri Ramalinga Sowdambigai College of Science
& Commerce, Coimbatore affiliated to Bharathiar
University, Coimbatore, Tamil Nadu, and India.

Annakkodi P. S is working as Assistant
Professor in the Department of Information
Technology, Sri Ramalinga Sowdambigai
College of Science & Commerce, Coimbatore.
She has 12 years of teaching experience in the

specializations Computer Science and Information
Technology and guided several PG and M.Phil Projects.

Paper ID: 02013981 405

