
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 2, February 2014
www.ijsr.net

A Futuristic Work on Distributed Storage and
Multiple Audition in Cloud Computing

Parkavi1, Krishnapriya2

1M.Phil Scholar, Department of Computer Science,
Sri Ramakrishna College of Arts and Science for Women, Coimbatore, Tamilnadu, India

2Head of the Department, Department of Computer Science

Sri Ramakrishna College of Arts and Science for Women, Coimbatore, Tamilnadu, India

Abstract: A flexible distributed storage enhances integrity auditing mechanism, utilizing the homomorphism token. The distributed
erasure-coded data also enabled. The proposed design is concentrated mainly to audit the cloud storage with very lightweight
communication and computation cost. The auditing result not only ensures strong cloud storage correctness guarantee, but also
simultaneously achieves fast data error localization. The fast data error localization is nothing but the identification of misbehaving
server. However the cloud data are dynamic in nature, the proposed design further supports secure and efficient dynamic operations on
outsourced data. The operation includes block modification, deletion, and append. Analysis shows the proposed scheme is highly
efficient and resilient against Byzantine failure. It is nothing but the malicious data modification attack, and even server colluding
attacks.

Keywords: Auditing mechanism, Erasure coded data, Benzantine failure.

1. Introduction

A computer network or data network is a
telecommunications network that allows computers to
exchange data. In computer networks, networked computing
devices (network nodes) pass data to each other along data
connections. The connections (network links) between nodes
are established using either cable media or wireless media.
Network devices that originate, route and terminate the data
are called network nodes. Nodes can include hosts such as
servers and personal computers, as well as networking
hardware. Two devices are said to be networked when a
device is able to exchange information with another device.

1.1 Cloud Computing

Cloud computing is a new computational paradigm that
offers an innovative business model for organizations to
adopt it without upfront investments. Cloud computing is
clearly one of today’s most enticing technological
breakthrough due to its cost-efficiency and flexibility.
Though cloud computing enables the movement of
application, software and data to a large data center where
the data management and associated services may not be
fully trustworthy thus raising some unanswered questions
about data security.

As the Internet has increased in speed and bandwidth,
remote storage of data over the network has become
feasible. Peer-to-peer (P2P) storage systems, especially
those based on the so-called Distributed Object Location and
Retrieval (DOLR) systems [12] such as Oceanstore [10] are
an important class of such systems. Systems like these face a
number of challenges such as data privacy, protection of the
data against alteration, data loss due to node unavailability
and the free rider problem.

The techniques based on algebraic signatures that allow a
“data origination site” to verify that a remote site is storing

data correctly, or whether a number of sites that collectively
store a collection of objects are doing so correctly. The
scheme or techniques does not need the original data for its
check, but only two small messages need to be exchanged
for each check. Both of these properties should be attractive
to designers of remote storage schemes.

As peer-to-peer technology has matured, a number of
systems such as Oceanstore [10], Intermemory [14], Ivy [8],
PAST [9], Starfish [13], FarSite [15] have beenbuilt to
utilize remote data storage. To protect against failure, this
data is stored redundantly using either pure replication or
m/n erasure coding. Similarly, Lillibridge, et al. [11] propose
a scheme where participants mutually store each other’s
backup data. All these schemes store data on sites that
cannot be trusted. In addition to peer unavailability, they
must face the problem of free riders. Free riders only
pretend to store other’s data and thus enjoy the benefits of
remote storage of their data without incurring any costs of
their own.

1.2 Cloud Storage

Cloud storage is a model of networked enterprise storage
where data is stored not only in the user's computer, but in
virtualized pools of storage which are generally hosted by
third parties, too. Hosting companies operate large data
centers, and people who require their data to be hosted either
buy or lease storage capacity from them.

Cloud storage services may be accessed through a web
service application programming interface (API), a cloud
storage gateway or through a web-based user interface. An
online data-backup service is a bounding for consumers and
enterprises alike. Amazon Simple Storage Service (S3) [1],
for example, offers an abstracted online-storage interface,
allowing programmers to access data objects through web-
service calls, with fees metered in gigabyte-months and
data-transfer amounts. Researchers have investigated

Paper ID: 02013882 162

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 2, February 2014
www.ijsr.net

alternative service models, such as peer-to-peer data
archiving [12].As users and enterprises come to rely on
diverse sets of data repositories, with variability in service
guarantees and underlying hardware integrity, they will
require new forms of assurance of the integrity and
accessibility of their data. Simple replication offers one
avenue to higher-assurance data archiving, but at often
unnecessarily and unsustainably high expense.

Modern day cloud storage is based on highly virtualized
infrastructure and has the same characteristics as cloud
computing in terms of agility, scalability, elasticity and
multi-tenancy, and is available both off-premise (Amazon
EC2) and on-premise (ViON Capacity Services)[1]. It is
believed to have been invented by Joseph Carl Robnett
Licklider in the 1960s.[2] However, Kurt Vonnegut refers to
a cloud "that does all the heavy thinking for everybody" in
his book "Sirens of Titan" published in 1959.[3] Since the
sixties, cloud computing has developed along a number of
lines, with Web 2.0 being the most recent evolution.
However, since the internet only started to offer significant
bandwidth in the nineties, cloud computing for the masses
has been something of a late developer.

It is difficult to pin down a canonical definition of cloud
storage architecture, but object storage is reasonably
analogous. Cloud storage services like Open Stack and
Sonian Inc., cloud storage products like EMC Atmos and
Hitachi Cloud Services, and distributed storage research
projects like OceanStore[4] or VISION Cloud are all
examples of object storage and infer the following
guidelines.

1.3 Cloud Security

Cloud computing security is an evolving sub-domain of
computer security, network security, and, more broadly,
information security. It refers to a broad set of policies,
technologies, and controls deployed to protect data,
applications, and the associated infrastructure of cloud
computing.

2. Related Work

D.L.G.Filho and P.S.L.M.Barreto2006 proposed a first
display of a secure homomorphic hash function is due to
Krohn, Freedman and Mazires[16]. Their function is mostly
satisfactory, despite performance issues. The same
parameter set can be applied to differently-sized messages.
Just as a matter of choice, it is interesting to know that a
second construction exists, based on a different hard
problem (namely factoring), even if it sports the same
characteristics and performance.

The protocol has one main advantage: public keys in their
protocol are as large as the data being protected, while the
protocol’s public key is just an RSA modulus. Also, the
protocol is slightly more flexible, as it does not fix the
message size for a given parameter set, and is arguably
simpler and more elegant. On the other hand, their proposal
may have better performance when elliptic curve groups are
employed. In the term of feature set and performance
differences, having a second construction with similar
properties, but based on a different hard problem, is good for

diversity. The main drawback on this method is poor
performance.

M.A.Shah et al, (2007) proposed a online service oriented
economy (OSOE) in which businesses and end users
purchase IT services from a variety of online service
providers (OSPs). For this nascent economy to become
established, customers will need ways to assess risk and gain
trust in OSPs [18, 19].

Third-party auditing is an accepted method for establishing
trust between two parties with potentially different
incentives [20]. Auditors assess and expose risk, enabling
customers to choose rationally between competing services.
Over time, a system that includes auditors reduces risk for
customers: when combined with a penalty or incentive
mechanism, auditing gives incentives to providers to
improve their services. Penalty and incentive mechanisms
become supportable when risks are well understood.
Auditing of OSPs is not feasible yet. First, customers are not
yet sophisticated enough to demand risk assessment.
Second, OSPs do not yet provide support for third party
audits.

A simple method for auditing data integrity is to sample
stored data through the public read and write interfaces of a
storage service. This approach requires no modification to
the service. The auditor simply creates some .fake. User
accounts, uploads content, and periodically extracts all of the
uploaded content and ensures the result matches the original.
Two approaches need to audit they are external auditing
and internal auditing. Servers need both internal and
external audits of OSPs. External audits can only confirm
past behavior, so without internal audits, the server could not
predict upcoming problems or assess risk exposure. On the
other hand, internal audits might not be exhaustive and
might be based on incomplete failure models; server can use
external audit results to assess whether internal audits are
really working.

J.Hendricks et al, (2007) proposed that the server uses
erasure coding for secure data retrieval. Unfortunately,
erasure coding creates a fundamental challenge: determining
if a given fragment indeed corresponds to a specific original
block. If this is not ensured for each fragment, then
reconstructing from different subsets of fragments may
result in different blocks, violating any reasonable definition
of data consistency. Systems in which clients cannot be
trusted to encode and distribute data correctly use one of two
approaches. In the first approach, servers are provided the
entire block of data, allowing them to agree on the contents
and generate their own fragments.

So cloud develops a new approach, in which each fragment
is accompanied by a set of fingerprints that allows each
server to independently verify that its fragment was
generated from the original value. The key insight is that the
coding scheme imposes certain algebraic constraints on the
fragments, and that there exist homomorphic fingerprinting
functions [21] that preserve these constraints. Servers can
verify the integrity of the erasure coding as evidenced by the
fingerprints, agreeing upon a particular set of encoded
fragments without ever needing to see them. Thus, the two

Paper ID: 02013882 163

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 2, February 2014
www.ijsr.net

common approaches described above could be used without
the bandwidth or computation overheads, respectively.

The fingerprinting functions belong to a family of universal
hash functions, chosen to preserve the underlying algebraic
constraints of the fragments. A particular fingerprinting
function is chosen at random with respect to the fragments
being fingerprinted. This “random” selection can be
deterministic with the appropriate application of a
cryptographic hash function. If data is represented carefully,
the remainder from division by a random irreducible
polynomial or the evaluation of a polynomial at a random
point preserves the needed algebraic structure [22]. The
resulting fingerprints are secure, efficient, and compact.

G.Ateniese et al, (2008) proposed the concept of third-party
data warehousing and, more generally, data outsourcing has
become quite popular. Outsourcing of data essentially means
that the data owner (client) moves its data to a third-party
provider (server) which is supposed to – presumably for a
fee – faithfully store the data and make it available to the
owner (and perhaps others) on demand. Appealing features
of outsourcing include reduced costs from savings in
storage, maintenance and personnel as well as increased
availability and transparent up-keep of data.

The problem of Provable Data Possession (PDP) [23, 24] –is
also sometimes referred to as Proof of Data Retrievability
(POR)– has popped up in the research literature. The central
goal in PDP is to allow a client to efficiently, frequently and
securely verify that a server – who purportedly stores
client’s potentially very large amount of data – is not
cheating the client. In this context, cheating means that the
server might delete some of the data or it might not store all
data in fast storage, e.g., place it on CDs or other tertiary off-
line media. It is important to note that a storage server might
not be malicious; instead, it might be simply unreliable and
lose or inadvertently corrupt hosted data. An effective PDP
technique must be equally applicable to malicious and
unreliable servers. The problem is further complicated by
the fact that the client might be a small device (e.g., a PDA
or a cell-phone) with limited CPU, battery power and
communication facilities.

M.A.shah et al, (2008) describe the study of deployed large-
scale storage systems show that no storage service can be
completely reliable; all have the potential to lose or corrupt
customer data. Today, a customer that wants to rely on these
services must make an uneducated choice. He has only
negative newsworthy anecdotes on which to base his
decision, and service popularity or “brand name” is not a
positive indicator of reliability. To know if his data is safe,
he must either blindly trust the service or laboriously
retrieve the hosted data every time he wants to verify its
integrity, neither of which is satisfactory.

Unfortunately, to date, there are no fair and explicit
mechanisms for making these services accountable for data
loss. The proposed solution to provide storage service
accountability is through independent, third party auditing
and arbitration. The customer and service enter into an
agreement or contract for storing data in which the service
provides some type of payment for data loss or failing to
return the data intact, e.g. free prints, refunds, or insurance.

In such an agreement, the two parties have conflicting
incentives.

The service provider, whose goal is to make a profit and
maintain a reputation, has an incentive to hide data loss. On
the other hand, customers are terribly unreliable, e.g. casual
home users. Customers can innocently (but incorrectly) or
fraudulently claim loss to get paid. Thus, the proposed
scheme involves an independent, third party to arbitrate and
confirm whether stored and retrieved data is intact.

A straightforward solution for maintaining privacy during
audits is for the customer to encrypt his contents using
symmetric-key encryption and keep those keys intact and
secret from uninvited parties. Then, the auditor can use
existing provably secure, challenge-response schemes on the
encrypted contents. This solution is unsatisfactory because
an unsophisticated customer is increasingly likely over time
either to lose the keys and be unable to recover the contents,
or to leak the keys. The solution is to shift the burden of
keeping these secret keys to a storage service [25, 26, 27].
Since services are already in the business of maintaining
customers’ data and privacy, the keys are safer with them.
Keeping the data content private from the service is optional.
A customer can keep the keys and encrypted data with the
same service, thereby revealing the contents to that service
and allowing it to provide value-added features beyond
storage like search. Otherwise, the customer can separate the
keys and encrypted data onto non-colluding services to
maintain complete privacy. The auditor is responsible for
auditing and extracting both the encrypted data and the
secret keys. The protocols, however, never reveal the secret
key to the auditor.

K. D. Bowers et al, (2009) proposed the concept of cloud
that trend toward loosely coupled networking of computing
resources, is unsecure data from local storage platforms.
Users today regularly access files without knowing—or
needing to know—on what machines or in what
geographical locations their files reside. They may even
store files on platforms with unknown owners and operators,
particularly in peer-to-peer computing environments. While
cloud computing encompasses the full spectrum of
computing resources, so users focus on archival or backup
data, large files subject to infrequent updates. While users
may access such files only sporadically, a demonstrable
level of availability may be required contractually or by
regulation.

Financial records, for instance, have to be retained for
several years to comply with recently enacted regulations.
Juels and Kaliski (JK)[30] recently proposed a notion for
archived files that they call a proof of retrievability (POR).
A POR is a protocol in which a server/archive proves to a
client that a target file F is intact, in the sense that the client
can retrieve all of F from the server with high probability. In
a na¨ıve POR, a client might simply download F itself and
check an accompanying digital signature. JK and related
constructions adopt a challenge-response format that
achieves much lower (nearly constant) communication
complexity—as little as tens of bytes per round in practice.

JK offer a formal definition of a POR and describe a set of
different POR designs in which a client stores just a single

Paper ID: 02013882 164

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 2, February 2014
www.ijsr.net

symmetric key and a counter. Their most practical
constructions, though, support only a limited number of
POR challenges. Shacham and Waters (SW) offer an
alternative construction based on the idea of storing
homomorphic block integrity values that can be aggregated
to reduce the communication complexity of a proof. Its main
advantage is that, due to the underlying block integrity
structure, clients can initiate and verify an unlimited number
of challenges.

C. Erway et al, (2009) proposed that the server provides a
definitional framework and efficient constructions for
dynamic provable data possession (DPDP) [32, 33, 34],
which extends the PDP model to support provable updates
on the stored data. Given a file F consisting of n blocks, an
update is either insertion of a new block (anywhere in e file,
not only append), or modification of an existing block, or
deletion of any block. Therefore the update operation
describes the most general form of modifications a client
may wish to perform on a file. The DPDP solution is based
on a new variant of authenticated dictionaries, where we use
rank information to organize dictionary entries. It results to
support efficient authenticated operations on files at the
block level, such as authenticated insert and delete.

The operation shows how to extend our construction to
support data possession guarantees of a hierarchical file
system as well as file data itself. To the best of our
knowledge, this is the first construction of a provable storage
system that enables efficient proofs of a whole file system,
enabling verification at different levels for different users
(e.g., every user can verify her own home directory) and at
the same time not having to download the whole data use a
modified authenticated skip list data structure. This new data
structure, called as rank-based authenticated skip list [35], is
based on authenticated skip lists but indexes data in a
different way. This would perfectly work for the static case.
But in the dynamic case, the file system would need an
authenticated red-black tree, and unfortunately no
algorithms have been previously presented for rebalancing a
Merkle tree while efficiently maintaining and updating
authentication information (except for the three-party model,
e.g.,). Yet, such algorithms have been extensively studied
for the case of the authenticated skip list data structure the
introduction of authenticated skip lists is presented before
the new data structure.

An authenticated skip list to check the integrity of the file
blocks. However, this data structure does not support
efficient verification of the indices of the blocks, which are
used as query and update parameters in the DPDP scenario.
The updates in the DPDP scenario are insertions of a new
block after the ith block and deletion or modification of the
ith block (there is no search key in this case, in contrast to
[26], which basically implements an authenticated
dictionary).

W. Wang et al, (2009) proposed the biggest concerns with
cloud data storage is that of data integrity verification at
untrusted servers. For example, the storage service provider,
which experiences Byzantine failures occasionally, may
decide to hide the data errors from the clients for the benefit
of their own. What is more serious is that for saving money
and storage space the service provider might neglect to keep

or deliberately delete rarely accessed data files which belong
to an ordinary client. Consider the large size of the
outsourced electronic data and the client’s constrained
resource capability, the core of the problem can be
generalized as how can the client find an efficient way to
perform periodical integrity verifications without the local
copy of data files.

In order to solve this problem, many schemes are proposed
under different systems and security models. In all these
works, great efforts are made to design solutions that meet
various requirements: high scheme efficiency, stateless
verification, unbounded use of queries and retrieve ability of
data, etc. The verifier in the model, all the schemes includes
two categories: private verifiability and public verifiability.
Although schemes with private verifiability can achieve
higher scheme efficiency, public verifiability allows anyone,
not just the client (data owner), to challenge the cloud server
for correctness of data storage while keeping no private
information. Then, clients are able to delegate the evaluation
of the service performance to an independent third party
auditor (TPA), without devotion of their computation
resources [31].

In the cloud, the clients themselves are unreliable or cannot
afford the overhead of performing frequent integrity checks.
Thus, for practical use, it seems more rational to equip the
verification protocol with public verifiability, which is
expected to play a more important role in achieving
economies of scale for Cloud Computing. Moreover, for
efficiency consideration, the outsourced data themselves
should not be required by the verifier for the verification
purpose.

Another major concern among previous designs is that of
supporting dynamic data operation for cloud data storage
applications. In Cloud Computing, the remotely stored
electronic data might not only be accessed but also updated
by the clients, e.g., through block modification, deletion and
insertion. Unfortunately, the state-of-the-art in the context of
remote data storage mainly focus on static data files and the
importance of this dynamic data updates has received
limited attention in the data possession applications so far.
Moreover, as will be shown later, the direct extension of the
current provable data possession (PDP) or proof of
retrievability (PoR) schemes to support data dynamics may
lead to security loopholes. Although there are many
difficulties faced by researchers, it is well believed that
supporting dynamic data operation can be of vital
importance to the practical application of storage
outsourcing services.

In view of the key role of public verifiability and the
supporting of data dynamics for cloud data storage, a
framework and an efficient construction for seamless
integration of these two components in this protocol design.
The contributions are (1) a general formal PoR model with
public verifiability for cloud data storage, in which block
less verification is achieved; (2) the proposed PoR
construction with the function of supporting for fully
dynamic data operations, especially to support block
insertion, which is missing in most existing schemes; (3) the
security of the proposed construction and justify the

Paper ID: 02013882 165

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 2, February 2014
www.ijsr.net

performance of the scheme through concrete implementation
and comparisons with the state-of-the-art.

C.Wang et al, (2012) describes that one fundamental aspect
of this paradigm shifting is that data is being centralized or
outsourced to the Cloud. From users’ perspective, including
both individuals and IT enterprises, storing data remotely to
the cloud in a flexible on-demand manner brings appealing
benefits: relief of the burden for storage management,
universal data access with independent geographical
locations, and avoidance of capital expenditure on hardware,
software, and personnel maintenances, etc

While Cloud Computing makes these advantages more
appealing than ever, it also brings new and challenging
security threats towards users’ outsourced data. Since cloud
service providers (CSP) are separate administrative entities,
data outsourcing is actually relinquishing user’s ultimate
control over the fate of their data [36]. As a result, the
correctness of the data in the cloud is being put at risk due to
the following reasons. First of all, although the
infrastructures under the cloud are much more powerful and
reliable than personal computing devices, they are still
facing the broad range of both internal and external threats
for data integrity. Examples of outages and security breaches
of noteworthy cloud services

appear from time to time. Secondly, there do exist various
motivations for CSP to behave unfaithfully towards the
cloud users regarding the status of their outsourced data. For
examples, CSP might reclaim storage for monetary reasons
by discarding data that has not been or is rarely accessed, or
even hide data loss incidents so as to maintain a reputation.

In order to achieve the assurances of cloud data integrity and
availability and enforce the quality of cloud storage service,
efficient methods that enable on-demand data correctness
verification on behalf of cloud users have to be designed.

However, the fact that users no longer have physical
possession of data in the cloud prohibits the direct adoption
of traditional cryptographic primitives for the purpose of
data integrity protection. Hence, the verification of cloud
storage correctness must be conducted without explicit
knowledge of the whole data files, [18], [25]. Meanwhile,
cloud storage is not just a third party data warehouse. The
data stored in the cloud may not only be accessed but also be
frequently updated by the users [8], [16], [17], include
insertion, deletion, modification, appending, etc. Thus, it is
also imperative to support the integration of this dynamic
feature into the cloud storage correctness assurance, which
makes the system design even more challenging. Last but
not the least, the deployment of cloud computing is powered
by data centers running in a simultaneous, cooperated, and
distributed manner. It is more advantages for individual
users to store their data redundantly across multiple physical
servers so as to reduce the data integrity and availability
threats. Thus, distributed protocols for storage correctness
assurance will be of most importance in achieving robust
and secure cloud storage systems. However, such important
area remains to be fully explored in the literature. Recently,
the importance of ensuring the remote data integrity has
been highlighted by the following research works under

different system and security models [18], [25], [23], [31],
[32], [30], [33], [36].

These techniques, while can be useful to ensure the storage
correctness without having users possessing local data, are
all focusing on single server scenario.. Although direct
applying these techniques to distributed storage (multiple
servers) could be straightforward, the resulted storage
verification overhead would be linear to the number of
servers. As an complementary approach, researchers have
also proposed distributed protocols for ensuring storage
correctness across multiple servers or peers. However, while
providing efficient cross server storage verification and data
availability insurance, these schemes are all focusing on
static or archival data. As a result, their capabilities of
handling dynamic data remains unclear, which inevitably
limits their full applicability in cloud storage scenarios.

Quan wang et al, 2012 proposed a erasure correcting code
in the file distribution preparation to provide redundancies
and guarantee the data dependability against Byzantine
servers, where a storage server may fail in arbitrary ways.
This construction drastically reduces the communication and
storage overhead as compared to the traditional replication-
based file distribution techniques. By utilizing the
homomorphic token with distributed verification of erasure-
coded data, our scheme achieves the storage correctness
insurance as well as data error localization.

The major drawback in this paper is the problem of data
security in cloud data storage, which is essentially a
distributed storage system. To achieve the assurances of
cloud data integrity and availability and enforce the quality
of dependable cloud storage service for users, this paper
proposes an effective and flexible distributed scheme with
explicit dynamic data support, including block update,
delete, and append. In this proposed scheme rely on erasure-
correcting code in the file distribution preparation to provide
redundancy parity vectors and guarantee the data
dependability. There are lot of researchers who have made
their contribution towards the evolution of cloud computing
and its associated challenges. A consolidated summary of
the research of few of them are listed below in the tabular
column.

3. Methodology

The proposed system is an effective and flexible distributed
scheme with explicit dynamic data support to ensure the
correctness of users’ data in the cloud. The proposed scheme
concentrates on erasure correcting code in the file
distribution preparation to provide redundancies and
guarantee the data dependability. This construction
drastically reduces the communication and storage overhead
as compared to the traditional replication-based file
distribution techniques. By utilizing the homomorphism
token with distributed verification of erasure-coded data, this
scheme achieves the storage correctness insurance as well as
data error localization: whenever data corruption has been
detected during the storage correctness verification, this
scheme can almost guarantee the simultaneous localization
of data errors, i.e., the identification of the misbehaving
server(s). This work is among the first few ones in this field
to consider distributed data storage in Cloud Computing.

Paper ID: 02013882 166

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 2, February 2014
www.ijsr.net

This contribution can be summarized as the following three
aspects:

1) Compared to many of its predecessors, which only

provide binary results about the storage state across the
distributed servers, the challenge-response protocol in
this work further provides the localization of data error.

2) Unlike most prior works for ensuring remote data
integrity, the new scheme supports secure and efficient
dynamic operations on data blocks, including: update,
delete and append.

3) Extensive security and performance analysis shows that
the proposed scheme is highly efficient and resilient
against Byzantine failure, malicious data modification
attack, and even server colluding attacks.

3.1 Distributed Cloud Storage

Cloud Storage is a model of networked computer data
storage where data is stored on multiple virtual servers,
generally hosted by third parties, rather than being hosted on
dedicated servers. Hosting companies operate large data
centers; and people who require their data to be hosted buy
or lease storage capacity from them and use it for their
storage needs. The data center operators, in the background,
virtualizes the resources according to the requirements of the
customer and expose them as virtual servers, which the
customers can themselves manage. Physically, the resource
may span across multiple servers. The distributed storage
holds good for all types of file format viz. .txt, .pdf, .img,
etc. to be stored in a distributed manner in the cloud server.
Although the time taken to retrieve would differ for different
file formats, the third party auditor is unbiased and works
seamlessly in ensuring the data integrity insurance across the
cloud server.

Algorithm for Updating and Deleting Data Present in
CSS for Multi-Client Environment

 Start
 Cloud Storage Server and Third party auditor

Synchronizing Clients and Gets Connected according to
their priorities.

 Client generates new Hash tree then sends it to Cloud
Storage Server

 Cloud Storage Server updates F and computes new root
R’. Runs Exec Update algorithm

 Cloud Storage Server sends old root and new root to
client.

 Client first verifies old root value to check whether CSS is
updating the same block or not. Runs Verify Update
algorithm.

 Client computes new R and verifies the update block. If it
fails outputs FALSE.

 Stop

3.2 Digital Signature

A digital signature or digital signature scheme is a
mathematical scheme for demonstrating the authenticity of a
digital message or document. A valid digital signature gives
a recipient reason to believe that the message was created by
a known sender, and that it was not altered in transit. Digital

signatures are commonly used for software distribution,
financial transactions, and in other cases where it is
important to detect forgery or tampering.

Digital signatures employ a type of asymmetric
cryptography. For messages sent through a non secure
channel, a properly implemented digital signature gives the
receiver reason to believe the message was sent by the
claimed sender. Digital signatures are equivalent to
traditional handwritten signatures in many respects; properly
implemented digital signatures are more difficult to forge
than the handwritten type. Digital signature schemes in the
sense used here are cryptographically based, and must be
implemented properly to be effective. Digital signatures can
also provide non-repudiation, meaning that the signer cannot
successfully claim they did not sign a message, while also
claiming their private key remains secret; further, some non-
repudiation schemes offer a time stamp for the digital
signature, so that even if the private key is exposed, the
signature is valid nonetheless.

3.3 Data Security Model

Following mathematical equations presents the data security
in cloud computing:

Df=C(NameNode);
Kf=f * Df;
C(.): the visit of nodes;
Df: the distributed matrix of file f;
Kf: the stste of data distribution in datanodes;
F: file, file f can be described as;
F={F(1), F(2),F(n)}, means f is the set of n file blocks.
F(i) ˄ F(j)=Φ, i!= j; j€ 1, 2,3,....n;
Df is a zero-one matrix, it is L*L, L is the number of
datanode.
Thus in order to provide the data security in cloud
computing we are presented the below approaches:
Df’ = CA (NameNode);
Df = M.Df’;
Kf = E(f) * Df;
CA(.) : authentic visit to namenode;
Df : private protect model of file the distributed matrix;
M : resolve private matrix;
E(f) : encrypted file f block by block, get the encrypted file
vector

The above mathematical equation ensures that the user
requesting for the data is indeed the owner of the data by
stringent verification measures to check for any possible
tampering or forging.

3.4 Third Party Auditor

TPA in possession of the public key can act as a verifier,
that TPA is unbiased while the server is untrusted. For
application purposes, the clients may interact with the cloud
servers via CSP to access or retrieve their pre-stored data.
More importantly, in practical scenarios, the client may
frequently perform block-level operations on the data files.
The most general forms of these operations we consider in
this paper are modification, insertion, and deletion.

Paper ID: 02013882 167

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 2, February 2014
www.ijsr.net

Table 4.1: Showcases of Single and Multiple audits
Number of attempts Single audit Multiple

audit
1 9 2
2 42 1

…. …. ….
…. …. ….
12 4 8
13 8 2
…. .… ….
…. …. ….
38 7 1
39 5 0

Public auditability for storage correctness assurance: to
allow anyone, not just the clients who originally stored the
file on cloud servers, to have the capability to verify the
correctness of the stored data on demand.

Data Integrity Verification Algorithm for Multi-Client
Environment.
 Start
 Multiple Clients synchronizing connection with Third

party auditor as well as Cloud Storage Server.
 Client gets connected with Third party auditor for Request

processing.
 Client generates a tag for each file block using signature

generation algorithm
 A Merkle Hash Tree is constructed for each file block.
 The root R of the Merkle Hash Tree is signed using the

secret key
 Client advertise file, set of signatures and computed root

value to the server and deletes it from its local storage
 TPA generates a challenge and sends to the server
 Server generates a proof based on challenge, the proof

contains auxiliary authenticate information using Generate
Proof algorithm

 The server sends the generated Proof P to the client.
 The Third party auditor validates the proof by generating

the root R, using verify Proof algorithm.
 After verification, the Third party auditor can determine

whether the integrity is reached.
 Stop

Dynamic data operations support to allow the clients to
perform block-level operations on the data files while
maintaining the same level of data correctness assurance.
The above algorithm involves the third party auditor in
synchronizing multiple clients with that of the cloud server.
The third party auditor receives the data request from the
clients in the form of a challenge by means of a set of
signatures, file location and relevant details. The auditor
then processes the challenge in the cloud server and
transmits the results to the client upon signature and data
request authentication. This approach of auditing ensures
that the data does not end up to anyone intended other than
the client.

The design should be as efficient as possible so as to ensure
the seamless integration of public auditability and dynamic
data operation. The time difference in single and multiple
audits to retrieve the file is listed in the above table. The
proposed methodology addresses all the critical aspects of
data security in cloud computing by incorporating

distributed cloud storage, digital signature and usage of third
party auditor(s) for single and multiple audits to ensure the
correctness of data in the cloud with considerable reduction
in time taken to retrieve the data using indigenously built
digital signature. The modus operandi of this system has
three components that are highly inter-connected to ensure
the veracity of the data being stored and retrieved by the
clients in the cloud server. The three components of this
system as described above are as follows:

1. Distributed Cloud Storage
2. Digital Signature
3. Third Party Auditor(s)

These components work in tandem to deliver an efficient
and the best possible solution towards data security in the
cloud servers. These components are built as per the
demands of the industry that is engulfed in complicated
issues as more and more clients are raising doubts over
storing their data in the cloud due to high levels of insecurity
that is prevalent in the remote data centers all across the
globe.

Although bypassing the existing methodology to address the
data security challenge would prove to be a quick fix
solution, the long term need would remain unfulfilled. Thus,
the proposed methodology is not a quick fix solution as it is
built on state-of-the-art techniques to face these challenges
and will stand testimony in the foreseeable future in cloud
computing space. This method of ensuring data integrity
correctness assurance has undergone various testing before
being proposed as an alternative to the existing and rapidly
outgoing system of security in cloud servers. The results of
these tests are discussed in the next chapter.

4. Evaluation of Result

The experiment is conducted using Java on a system with an
Intel dual core processor running at 2.4 GHz, 1 GB RAM.
During the implementation the proposed system made three
parts which are major components of proposed approach
such as clients, third party auditor and cloud server in order
to store client’s data. A sample set of file blocks is processed
and stored at server. The integrity verification is carried out
using different set of challenges and verifies the proof
generated by the server. The storage space for key
generation, Merkle tree construction and signature
generation take place in the constant order. In the integrity
verification stage, the proof generation and verification take
place in the O (log n) as the file block (mi) is used instead of
index. Hence file index recomputation is avoided at each
proof generation and verification process.

4.1 Result of Distributed Storage

The underlying principle of distributed storage is to break
the data into multiple sequences and store in the server. This
distribution can be customized based on the number of
partitions that need to be created for storing the data. The
user file is distributed to the number of partitioned storage in
server with equal memory. Any data request by the user has
to pass through the verification procedure for successful data
retrieval.

Paper ID: 02013882 168

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 2, February 2014
www.ijsr.net

Figure 5.1: Distributed Storage

The above figure represents the outcome of distributed data
storage where the data is distributed in multiples of two. In
the proposed scheme the distributed storage is partitioned
into two. So the size of the user(s) file is equally distributed.

4. 2 Result of Verification

The verification process is to check that the data stored in
the server is secure and devoid of any hacking. This is
ensured by displaying the result after the signature
authentication procedure performed by the proposed system.

Figure 5.2: Verification Result

Figure 5.2 shows the verification taken place in the
middleware. If the data is modified in the server by means of
hacking, the middleware verifies the signature of the
authorized user and check the original. By this verification
the middleware displays the result that the content is
mismatched or not. Any case of mismatching in the
procedure is reported by the verification and thereby leaving
no error for hacking or potential data compromise to happen
in the server. This verification procedure is conducted in the
middleware.

4.3 Result of Performance Analysis

The performance of distributed storage is gauged by the
retrievability factor of the server when a data request is put
forth by the user(s). There are two types of audits conducted
to measure the performance of the server viz. single audit
and multiple audits. The primary purpose of auditor(s) is to
verify the authenticity of the signature and the correctness of
the data requested by the users before the auditor(s) start
processing the request.

4.3.1comparison of Single and Multiple Audits
A brief comparison of how single and multiple audits fare in
the context of time taken to retrieve the data from the server
based on single or multiple requests by the user(s).

4.3.2 Single audit
The single audit process engages only one TPA to verify the
authenticity of the signature and the correctness of the data
requested by the user before processing the data. The time
taken to retrieve the data in case of a single audit process is
longer when more than one user requests the data from the
server.

Figure 5.3: Single audit

The screen print above indicates the retrieval time for a
single audit process. . In the above figure, the second
column after single audit indicates the number of auditor(s)
particular to this audit, and the sum of all the numeric values
in the last column indicates the time taken in seconds to
retrieve the data.

4.4 Multiple Audits

The multiple audits process engages more than one TPA to
verify the signature and the correctness of the data requested
by the user(s) before processing the data. The time taken to
retrieve the data in case of a multiple audit process is
considerably reduced as more audits are conducted for
multiple requests by the users.

Figure 5.4 Multiple audit

The screen print above indicates the retrieval time for a
multiple audit process. In the above screenshot, the second
column after single audit indicates the number of auditor(s)
particular to this audit, and the sum of all the numeric values
in the last column indicates the time taken in seconds to
retrieve the data. The results discussed above clearly
indicate a significant improvement in the way data would be
stored in the cloud servers in comparison to the existing
storage type. Though the system uses distributed storage
technique to store the data, the data security, integrity
insurance and correctness assurance is not compromised at
any cost owing to the fact that the data verification using the
state-of-the-art digital signature is implemented. Also, the

Paper ID: 02013882 169

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 2, February 2014
www.ijsr.net

time taken to retrieve the data is considerably reduced
explains the capability of multiple audits and thereby
pushing single audits into oblivion.

Figure 5.6: Comparison graph

The above graph indicates the time difference between the
single and the multiple audition.the performance of multiple
audition is far better than the single audition in different type
of files such as text ,pdf,etc.,.. This integrated system of
distributed cloud storage, digital signature and third party
auditor in cloud storage server not only addresses the data
storage correctness challenge but also provides a more
sophisticated framework that is expected to be accepted by
one and all among the cloud computing fraternity.

5. Conclusion and Future Work

To ensure cloud data storage security, it is critical to enable
a third party auditor (TPA) to evaluate the service quality
from an objective and independent perspective. Public audit
ability also allows clients to delegate the integrity
verification tasks to TPA while they themselves can be
unreliable or not be able to commit necessary computation
resources performing continuous verifications.

Another major concern is how to construct verification
protocols that can accommodate dynamic data files. The
public audit ability and data dynamics for remote data
integrity check in Cloud Computing. The construction is
deliberately designed to meet these two important goals
while efficiency being kept closely in mind. To achieve
efficient data dynamics, the proposed system improve the
existing proof of storage models by manipulating the classic
Merkle Hash Tree (MHT) construction for block tag
authentication is to support efficient handling of multiple
auditing tasks.

In the future work technique of bilinear aggregate signature
to extend our main result into a multi-user setting, where
TPA can perform multiple auditing tasks simultaneously.
Extensive security and performance analysis show that the
proposed scheme is highly efficient and provably secure.

References

[1] Alistair Wyse. PlusNet: Email Update
3rdAugust.http://usertools.plus.net/status/archive/11546
03560.htm, August 2006.

[2] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz A.
Barroso. Failure trends in a large disk drive population.
In USENIX Conference on File and Storage
Technologies (FAST 2007), pages 17–29, 2007

[3] David Lazarus. Precious Photos Disappear. San
Francisco Chronicle, http://www.sfgate. com/cgi
bin/article.cgi?file=/chronicle/archive/2005/02/02/BUG
7QB3U0S1.DTL, February 2005.

[4] JohnKubiatowicz et al. OceanStore: An Architecture for
Global-Scale Persistent Storage.ASPLOS, November
2000

[5] Evan Hanson. Hotmail incinerates customer files.
CNET News.com,
http://news.com.com/Hotmail+incinerates+customer+fil
es/2100-1038_3-5226090.html, June 2004.

[6] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler.An analysis of
latent sector errors in disk drives. In SIGMETRICS’07,
pages 289–300, 2007.

[7] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Bianca Schroeder, Andrea C. Arpaci- Dusseau, and
Remzi H. Arpaci-Dusseau.An analysis of data
corruption in the storage stack.In USENIX conference
on File and Storage Technologies (FAST ’08), pages
223–238, 2008.

[8] Muthitacharoen, R. Morris, T. M. Gil, and B. Chen.
Ivy:A read/write peer-to-peer file system. In
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI), Boston,
MA, Dec. 2002.

[9] Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP
’01), pages 188–201,

[10] Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,R.
Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,C.
Wells, and B. Zhao. OceanStore: An architecture for
global-scale persistent storage. In Proceedings of the 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), Cambridge, MA, Nov. 2000. ACM.

[11] Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M.
Isard.A cooperative Internet backup scheme. In
Proceedings of the 2003 USENIX Annual Technical
Conference, pages 29–42, San Antonio, TX, 2003

[12] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I.
Stoica. Towards a common API for structured peer-to-
peer overlays. In Peer-to-Peer Systems II: Second
International Workshop, IPTPS 2003, Springer Lecture
Notes in Computer

[13] Science 2753, pages 33–44, Berkeley, CA, USA, Feb.
2003.

[14] E. Gabber, J. Fellin, M. Flaster, F. Gu, B. Hillyer, W. T.
Ng B. ¨Ozden, and E. Shriver. StarFish: Highly-
available block storage. In Proceedings of the Freenix
Track: 2003 USENIX Annual Technical Conference,
pages 151–163, San Antonio,

[15] TX, June 2003.
[16] V. Goldberg and P. N. Yianilos. Towards and archival

intermemory. In Advances in Digital Libraries ADL’98,
pages 1–9, April 1998.

[17] Adya, W. J. Bolosky, M. Castro, R. Chaiken, G.
Cermak, J. R. Douceur, J. Howell, J. R. Lorch, M.

Paper ID: 02013882 170

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 2, February 2014
www.ijsr.net

Theimer, and R. Wattenhofer. FARSITE: Federated,
available, and reliable storage for an incompletely
trusted environment.In Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA, Dec. 2002.
USENIX.

[18] D.L.G. Filho and P.S.L.M. Barreto, Demonstrating Data
Possession and Uncheatable Data Transfer,” Cryptology
ePrint Archive,Report 2006/150, http://eprint.iacr.org,
2006.

[19] Ian Clarke. Freenet – the free network project.
http://freenetproject.org.Allmydata Inc. Allmydata.
http://allmydata.com.

[20] M.A. Shah, M. Baker, J.C. Mogul, and R.
Swaminathan, “Auditingto Keep Online Storage
Services Honest,” Proc. 11th USENIX Workshop Hot
Topics in Operating Systems (HotOS ’07), pp. 1-6,
2007.

[21] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure
Trends in a Large Disk Drive Population. In Proc.
FAST, Feb. 2007.

[22] Schroeder and G. Gibson. Disk Failures in the Real
World: What does an MTTF of 1,000,000 hours mean
to you? In Proc. FAST, Feb. 2007.

[23] J. Hendricks, G. Ganger, and M. Reiter, “Verifying
Distributed Erasure-Coded Data,” Proc. 26th ACM
Symp. Principles of Distributed Computing, pp. 139-
146, 2007.

[24] J. L. Carter and M. N. Wegman. Universal classes of
hashfunctions (extended abstract). In Proceedings of the
9th ACM Symposium on Theory of Computing, pages
106–112. ACMPress, 1977.

[25] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik,
“Scalable and Efficient Provable Data Possession,”
Proc. Fourth Int’l Conf.Security and Privacy in Comm.
Netowrks (SecureComm ’08), pp. 1-10,

[26] 2008.
[27] Juels and B. Kaliski. PORs: Proofs of retrievability for

large files. In ACM CCS’07, Full paper available on e-
print (2007/243), 2007.

[28] M.A. Shah, R. Swaminathan, and M. Baker, “Privacy-
Preserving Audit and Extraction of Digital Contents,”
Cryptology ePrint Archive, Report 2008/186,
http://eprint.iacr.org, 2008.

[29] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An analysis of
latent sector errors in disk drives. In GMETRICS’07,
pages 289–300, 2007.

[30] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Bianca Schroeder, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. An analysis of data
corruption in the storage stack.In USENIX conference
on File and Storage Technologies (FAST ’08), pages
223–238, 2008.

[31] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz A.
Barroso. Failure trends in a large disk drive population.
In USENIX Conference on File and Storage
Technologies (FAST 2007),pages 17–29, 2007.

[32] Bianca Schroeder and Garth A. Gibson. Disk failures in
the real world: What does an mttf of 1,000,000 hours
mean to you? In USENIX Conference on File and
Storage Technologies (FAST 2007), pages 1–16, 2007.

[33] K.D. Bowers, A. Juels, and A. Oprea, “Proofs of
Retrievability:Theory and Implementation,” Proc. ACM

Workshop Cloud Computing Security (CCSW ’09), pp.
43-54, 2009.

[34] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,
“Enabling Public Verifiability and Data Dynamics for
Storage Security in Cloud Computing,” Proc. 14th
European Conf. Research in Computer Security
(ESORICS ’09), pp. 355-370, 2009.

[35] Erway, A. Kupcu, C. Papamanthou, and R.
Tamassia,“Dynamic Provable Data Possession,” Proc.
16th ACM Conf.Computer and Comm. Security (CCS
’09), pp. 213-222, 2009.

[36] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.
Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In CCS, pp. 598–609,
2007.

[37] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of
retrievability via hardness amplification. In TCC, pp.
109–127, 2009.

[38] H. Shacham and B. Waters. Compact proofs of
retrievability.In ASIACRYPT, pp. 90–107, 2008.

[39] Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou,
“Privacy-Preserving Public Auditing for Secure Cloud
Storage,” IEEE Trans.Computers, preprint, 2012,
doi:10.1109/TC.2011.245.

Paper ID: 02013882 171

