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1. Preliminaries  
 
In 1961 Kelly [5] introduced the concept of bitopological 
spaces as an extension of topological spaces. A bitopological 
space (X, τ1, τ2) is a nonempty set X equipped with two 
topologies τ1 and τ2[5] The study of quasi open sets in 
bitopological spaces was initiated by Datta[1] in 1971. In a 
bitopological space (X, τ1, τ2) a set A of X is said to be quasi 
open [9] if it is a union of a τ1-open set and a τ2-open set. 
Complement of a quasi open set is termed quasi closed. 
Every τ1-open (resp., τ2-open) set is quasi open but the 
converse may not be true. Any union of quasi open sets of X 
is quasi open in X. The intersection of all quasi closed sets 
which contains A is called quasi closure of A. It is denoted 
by qcl(A). The union of quasi open subsets of A is called 
quasi interior of A. It is denoted by qInt(A)[1]. 
 
In 1963 N. Levine [8] introduced the concept of semi open 
sets in topology. A subset A of a topological space (X, τ) is 
called semi open if there exists an open set O in X such that 
O ⊂ A ⊂ Cl(O). Every open set is semi open but the 
converse may not be true. In 1985, Maheshwari, Chae and 
Thakur[10] introduced quasi semi open sets in bitopological 
spaces. A set A in a bitopological space (X, τ1, τ2) is called 
quasi semi open[10] if it is a union of a τ1-semi open set and 
a τ2-semi open set. Complement of a quasi semi open set is 
called quasi semi closed. Every τ1-semi open (τ2-semiopen, 
quasi open) set is quasi semi open but the converse may not 
be true. Any union of quasi semi open sets of X is a quasi 
semi open set in X. The intersection of all quasi semi closed 
sets which contains A is called quasi semi closure of A. It is 
denoted by qscl(A). The union of quasi semi open subsets of 
A is called quasi semi interior of A. It is denoted by qsInt(A) 
 
In 1996 Dontchev[2] introduced a new class of functions 
called contra-continuous functions. A function f: X → Y to 
be contra continuous if the pre image of every open set of Y 
is closed in X. The study of ideal topological spaces was 
initiated by Kuratowski [7] and Vaidyanathaswamy [13]. An 
Ideal I on a topological space (X, τ) is a non empty 
collection of subsets of X which satisfies: A ∈. I and B ⊂ A 
⇒ B ∈. I and A ∈. I and B ∈. I ⇒ A∪B ∈. I . If � (X) is the 
set of all subsets of X, in a topological space (X, τ) a set 

operator (.)*:� (X) → � (X) is called the local mapping[6] of 
A with respect to τ and I and is defined as follows: A∗ (τ, I) 
(in short A∗) = {x∈XU ∩ A ∉ I, ∀ U∈ τ(x)} where τ(x) = 
{U∈ τ x∈U}[4]. Given an ideal bitopological space (X, τ1, 
τ2, I) the quasi local mapping[3] of A with respect to τ1, τ2 
and I denoted by A�

∗  (τ1, τ2, I) ( in short A�
∗ ) is defined as 

follows: A�
∗ (τ1, τ2, I) = {x∈XU ∩ A ∉ I ,∀ quasi open set 

U containing x}.  
 
A subset A of an ideal bitopological space (X, τ1, τ2, I) is 
said to be qI- open [3] if A ⊂ qInt A�

∗ . A mapping f: (X, τ1, 

τ2, I) → (Y, σ1, σ2) is called qI- continuous[3] if f -1(V) is qI- 
open in X for every quasi open set V of Y. Recently the 
authors of this paper[11] defined qsI- open sets and qsI- 
continuous mappings in ideal bitopological spaces. 
 
Definition1.1. [11] Given an ideal bitopological space (X, 
τ1, τ2 I) the quasi semi local mapping of A with respect to τ1, 
τ2 and I denoted by A��

∗ (τ1, τ2, I) (more generally as A��
∗ ) is 

defined as A��
∗ (τ1, τ2 ,I) = {x∈XU ∩ A ∉ I ,∀ quasi semi-

open set U containing x} 
 
Definition1.2. [11] A subset A of an ideal bitopological 
space (X, τ1, τ2, I ) is qsI- open if A ⊂ qsInt(A��

∗ ) and qsI- 
closed if its complement is qsI- open. If the set A is qsI-
open and qsI-closed, then it is called qsI-clopen 
 
Remark1.1. [11] Every qI- open set is qsI- open but the 
converse is not true 
Remark1.2. [11] The concepts of qsI- open sets and quasi 
semi open sets are independent. 
 
Definition1.3.[11] A mapping f: (X, τ1, τ2, I) → (Y, σ1 ,σ2) is 
called a qsI- continuous if f -1(V) is a qsI- open set in X for 
every quasi open set V of Y 
 
Remark1.3. [11] Every qI- continuous mapping is qsI- 
continuous but the converse is not true 
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Definition1.4.[11] In an ideal bitopological space (X,τ1,τ2,I) 
the quasi ∗ -semi closure of A of X denoted by qscl*(A) is 
defined by qscl*(A) = A ∪ A��

∗   
 
Definition1.5.[11] A subset A of an ideal bitopological space 
(X, τ1, τ2, I) is said to be a qsI- neighbourhood of a point x ∈ 
X if ∃ a qsI- open set O such that x ∈ O ⊂ A  
 
Definition1.6.[11] Let A be a subset of an ideal 
bitopological space (X, τ1, τ2, I ) and x ∈ X. Then x is called 
a qsI- interior point of A if ∃ V a qsI- open set in X such 
that x ∈ V ⊂ A. 
The set of all qsI- interior points of A is called the qsI- 
interior of A and is denoted by qsIInt(A).  
 
Definition1.7.[11] Let A be a subset of an ideal 
bitopological space (X, τ1, τ2, I ) and x ∈ X. Then x is called 
a qsI-cluster point of A, if V ∩ A ≠ ∅ for every qsI- open 
set V in X. The set of all qsI- cluster points of A denoted by 
qsIcl(A) is called the qsI- closure of A . 
 
Definition1.9.[12] A mapping f: (X,τ1,τ2,I) → (Y,σ1,σ2) is 
called qI- irresolute if f -1(V) is a qI- open set in X for every 
quasi open set V of Y. 
 
Definition1.8.[12] A mapping f: (X,τ1,τ2,I) → (Y,σ1,σ2) is 
called qsI- irresolute if f -1(V) is a qsI- open set in X for 
every quasi semi open set V of Y. 
 
2. Contra qsI-continuous functions 
 
Definition 2.1. A function f: (X, τ1, τ2, I) → (Y, σ1, σ2) is 
called contra qsI- continuous if f−1 (V) is qsI-closed in X 
for each quasi open set V in Y. 
Theorem 2.1. For a function f: (X, τ1, τ2, I) → (Y, σ1, σ2), 
the following are equivalent: 
a) f is contra qsI-continuous . 
b) For every quasi closed subset F of Y, f−1 (F) is qsI-open 

in X. 
c) For each x ∈. X and each quasi closed subset F of Y with 

f(x) ∈.F, there exists a qsI-open subset U of X with x ∈. 
U such that f (U) ⊂ F. 

Proof: (a) ⇒ (b) and (b) ⇒ (c) are obvious. 
(c) ⇒ (b) Let F be any quasi closed subset of Y. If x ∈. f−1 

(F) then f(x)  F, and there exists a qsI- open subset Ux of X 
with x  Ux such that f(Ux) ⊂ F. Therefore, f-1(F) = ∪ {Ux: x 
∈. f-1 (F)}. Hence we get f−1 (F) is qsI-open.[11] 
 
Remark 2.1. Every contra qsI-continuous function is contra 
qI-continuous, but the converse need not be true  
 
Remark 2.2. The concepts of qsI -continuity and contra qsI 
-continuity are independent of each other 
 
Theorem 2.2. If a function f: (X, τ1, τ2, I) →(Y, σ1, σ2) is 
contra qsI-continuous and Y is regular, then f is qsI-
continuous 
 

Proof: Let x  X and let V be a quasi open subset of Y with 
f(x) ∈.V Since Y is regular, there exists an quasi open set W 
in Y such that f (x)  W ⊂ cl(W) ⊂ V. Since f is contra qsI-
continuous, by Theorem 2.1.there exists a qsI-open set U in 
X with x  U such that f (U) ⊆ cl (W). Then f (U) ⊆ cl (W) 
⊆ V. Hence f is qsI-continuous [11].  
 
Remark 2.3. If f is contra qsI-continuous and Y is regular, 
then f need not be contra qsI-continuous  
 
Definition 2.2. A topological space (X, τ1, τ2, I) is said to be 
qsI -connected if X is not the union of two disjoint non-
empty qsI-open subsets of X.  
 
Theorem 2.3. If f: (X, τ1, τ2, I) → (Y, σ1, σ2) is a contra 
qsI-continuous function from a qsI-connected space X onto 
any space Y , then Y is not a discrete space. 
 
Proof: Suppose that Y is discrete. Let A be a proper non-
empty quasi clopen set in Y. Then f−1(A) is a proper non-
empty qsI- clopen subset of X, which contradicts the fact 
that X is qsI-connected.  
 
Theorem 2.4. A contra qsI-continuous image of a qsI-
connected space is connected. 
 
Proof: Let f: (X, τ1, τ2, I) → (Y, σ1, σ2) be a contra qsI- 
continuous function from a qsI-connected space X onto a 
space Y . Assume that Y is disconnected. Then Y = A ∪ B, 
where A and B are non-empty quasi clopen sets in Y with A 
∩ B = ∅. Since f is contra qsI-continuous , we have that 
f−1(A) and f−1(B) are qsI-open non-empty sets in X with f−1 
(A) ∪ f−1 (B) = f−1 (A ∪ B) = f−1 (Y ) = X and f−1 (A) ∩ f−1 
(B) = f−1 (A ∩ B) = f−1 (∅) = ∅. This means that X is not 
semi-I-connected, which is a contradiction. Then Y is 
connected.  
 
Definition 2.3. A space (X, τ1, τ2, I)) is said to be qsI-
normal if each pair of non-empty disjoint quasi closed sets 
can be separated by disjoint qsI-open sets. 
 
Definition 2.4. A space (Y, σ1, σ2) is said to be ultra normal 
if each pair of non-empty disjoint quasi closed sets can be 
separated by disjoint quasi clopen sets. 
 
Theorem 2.5. If f: (X, τ1, τ2, I) → (Y, σ1, σ2) is contra qsI- 
continuous, closed and one-one, Y is ultra normal, then X is 
qsI- normal. 
 
Proof: Let C1 and C2 be disjoint quasi closed subsets of X. 
Since f is closed and one-one f(C1) and f(C2) are disjoint 
quasi closed subsets of Y. But Y is ultra normal, so f(C1) and 
f(C2) are separated by disjoint quasi clopen sets V1 and V2, 
respectively.  
 
Since f is contra qsI- continuous, f−1 (V1) and f−1 (V2) are 
qsI- open, where C1 ⊆ f−1 (V1), C2 ⊆ f−1 (V2) and f− (V1) ∩ 
f−1 (V2) = ∅. Hence, X is qsI-normal.  
 

(F) then f(x)  F, and there exists a qs(F) then f(x)  F, and there exists a qs
with x  U

 Let x  X and let V be a quasi open subset of Y with 

in Y such that f (x)  W in Y such that f (x)  W 

X with x  U such that f (U) X with x  U such that f (U) 
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Definition 2.5. A space (X, τ1, τ2, I) is said to be qsI- 
compact if every qsI- opencover of X has a finite subcover. 
 
Definition 2.6. A mapping f: (X, τ1, τ2, I) → (Y, σ1, σ2) is 
called contra qsI- irresolute if f -1(V) is a qsI- closed set in X 
for every quasi semi open set V of Y. 
 
Remark 2.5. Contra qsI- irresoluteness and qsI -
irresoluteness are independent 
 
Definition 2.7 A function f: (X, τ1, τ2, I1) → (Y, σ1, σ2, I2) is 
called quasi- irresolute if f−1(V ) is qsI1- open in X for each 
qsI2- open set V of Y. 
 
Definition 2.8. A function f: (X, τ1, τ2, I1) → (Y, σ1, σ2, I2) is 
called contra quasi- irresolute if f−1(V ) is qsI1- closed in X 
for each qsI2- open set V of Y. 
The following two remarks are evident from the definition 
 
Remark 2.5. Contra quasi- irresoluteness and quasi- 
irresoluteness are independent 
 
Remark 2.6. Contra quasi- irresolute function is contra qsI-
continuous, but the converse is not true  
 
Theorem 2.6. A function f: f: (X, τ1, τ2, I1) → (Y, σ1, σ2, I2) 
is quasi-irresolute if and only if the inverse image of each 
qsI2-closed set in Y is qsI1-open in X.  
 
Theorem 2.7. Let f: (X, τ1, τ2, I1) → (Y, σ1, σ2, I2) and g: (Y, 
σ1, σ2, I2) → (Z, ρ 1, ρ 2, I3) Then, 
1. gof is contra quasi- irresolute if g is quasi -irresolute and f 

is contra quasi- irresolute. 
2. gof is contra quasi- irresolute if g is contra quasi-

irresolute and f is quasi -irresolute. 
 
Theorem 2.8. Let f: (X, τ1, τ2, I1) → (Y, σ1, σ2, I2) and g: (Y, 
σ1, σ2, I2) → (Z, ρ 1, ρ 2, I3) Then, 
1. gof is contra qsI- continuous if g is continuous and f is 

contra qsI- continuous. 
2. gof is contra qsI- continuous if g is qsI- continuous and f 

is contra quasi- irresolute 
 
The next theorem follows from the fact that a function  
f: (X, τ1, τ2, I1) → (Y, σ1, σ2, I2) is qsI- open [11] if for each 
quasi open set U of X, f(U) is qsI- open in Y . 
 
Theorem 2.9. Let f: (X, τ1, τ2, I1) → (Y, σ1, σ2, I2) be onto, 
quasi- irresolute and qsI- open and let g: (Y, σ1, σ2, I2) → (Z, 
ρ 1, ρ 2, I3) be any function. Then gof is contra qsI- 
continuous if and only if g is contra qsI -continuous. 
 
Proof: Necessary: Let gof be contra qsI- continuous and C a 
quasi closed subset of Z. Then (gof)−1(C) is a qsI- open 
subset of X. Thus f−1 (g−1 (C)) is qsI- open in X. Since f is 
qsI- open, f(f−1 (g−1 (C))) is qsI -open subset of Y. So g−1 
(C) is qs- open in Y. Therefore, g is contra qsI -continuous. 
Sufficient: Obvious.  
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