
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Energy Conservation for Datacenters in Cloud
Computing using Genetic Algorithms

Vijaya Kumar1, Dr. G. A. Ramachandra2

1Computer Science and Technology, Sri Krishnadevaraya University, Anantapuramu, A.P, India

2 Computer Science and Technology, Sri Krishnadevaraya University, Anantapuramu, A.P, India

Abstract: In recent developments most of the organizations are focused on reduce the investment to the work environment and
important concern, how to design the infrastructure and how to utilize maximum resources.The optimization of energy consumption is
important concern for design of day to day life and future computing and distinguish techniques to improve performance of workload
demand in the dynamic environment such grids, clusters and clouds. This paper proposes an improved genetic algorithm based on time
cost and energy consumption models and we use the Dynamic Voltage scaling (DVS) and Dynamic voltage frequency scaling(DVFS)
methodologies for reduce energy consumption and determine the optimal placement of virtual machines in order to maximize the overall
renewable energy usage and minimize the energy consumption.

Keywords: Dynamic Voltage Scaling (DVS), Dynamic Voltage frequency scaling (DVFS), Datacenter, Energy consumption, Genetic
Algorithm.

1. Introduction

One of the main challenges in recent years is to reduce the
Energy usage in datacenter. For example operating middle
size organization has organized medium size datacenter
having capacity 80000 kW power and we can estimate the
computing resource consume around 1- 5 % of the world's
total power usage. In modern datacenters, are not only
expensive to maintain infrastructure, unfriendly to the nature
to the environment and carbon emissions effects to the
nature[1]. Most of the IT organizations utilize the high
amount of energy and huge amount of carbon footprints are
incurred due to massive amount of powering the number of
servers hosted to the datacenters. To allow computing
facilities to operate on high power will lead to a temperature
of computing systems for long time so to reducing power
consumption for datacenters over world. We proposed a
novel optimization technique Parallel genetic Algorithm- to
get the optimal solution of Job shop scheduling problem by
using distinguish constraints for utilization of resources and
also reduce large number of execution times to find near
optimal solutions in intensive data.

We proposed a scheduling of virtual machines to reduce
power consumption of parallel tasks and find the problem to
minimize task execution time and also reduce power
consumption. The main objective of proposed work is to
define an effective genetic based parallel scheduler can be
implemented in dynamic grid environment and also allocate
resources. For better solutions of larger problems we
implemented Modified Hybrid genetic Algorithm and
Partition genetic algorithm to execute and process in a
parallel mode.

Virtualization has been reduced the energy cost of an
infrastructure - Physical server consolidation.Let us consider
1MW data center with 1000 physical servers that consume
150 W each at cost of $ 0.15 per kilowatt/hr. To calculate the
energy cost per year of 1000 physical server (150w/1000 *
0.15 * 24hr *365 days * 1000 servers = 197100). By using

the Virtualization of these servers conservative consolidation
ratio of 10: 1, each physical machine can manage the 10
virtual machines at a CPU utilization of 70 % of total energy
cost. (150/1000*0.15*24hr*365 days * 100 = 1314000.

2. Related Work

In the last decade, Information Communication Technology
sector (ICT) is increased and investment amount on
infrastructure is very high and it effects to the environment.
To minimize the emission of green houses in ICT sector and
it causes global warming and most of IT organizations have
deployed datacenters for provision of cloud computing
hosting of the internet applications and also govt sector is to
promote energy efficiency for datacenters and to minimize
the impact on the environment. In datacenters have size of
thousands of servers, physical machines, virtual machines
and switches’, using lower energy usage is creating complex
issues to larger servers and disks to perform as fast within
the required time period [2]. A major problem with VM
migration, sending loads to remote datacenters causes delay
costs and energy cost due to increase an amount of data and
virtual machine capacity transferred over the internet. To
achieve efficient processing and maximum utilization and
also minimize energy consumption in datacenters, we
proposed the Modified Hybrid genetic algorithm to solve the
dynamic resource allocation along with integrated allocation
of resources and energy efficient transport technology
reductions in the power consumptions in datacenters [3].

Power Model: Energy efficiency can be improve PUE metric
(Power usage effectiveness), which is measure the quality of
the datacenter infrastructure and calculate the total building
power to IT equipment power.

PUE = `
owerEquipmentpIT

PowerFacility

Paper ID: SUB14365 577

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

In this Power Model we assume total power consumption of
Server ' S ' has linear relationship with all physical machines
power utilization , we calculate the physical machine
utilization

Power Utilization = Total power supply / number of
physical machines is in active mode

We also calculate the CPU utilization of each physical
machine and Virtual machines

CPU utilization = Sum of the CPU utilization ̸ Usage of CPU
utilization

Power CPU utilization = Physical machine idle state +
(Maximum CPU utilization - Physical machine idle state) ×
no. of Virtual machines

Total Energy consumption in a host in the interval of time
[t1,t2] is defined as

 E = ∫
2

1

))((
t

t

tnutilizatioCPUP dt

To increase the improving availability we will reduce the
load across multiple systems, so load is reduced energy
efficiency will be reduced and also we concern about to
reduce losses in the power system and the power used for the
infrastructure we used bulk amount of power consumption in
the datacenters. If we reduce the IT load then automatically
minimize the overall power supplying for the
datacenter.Whenever we reduced the IT load, Infrastructure
Load/IT load will always increase and it will effect to the
PUE to increases the power usages.

PUE= `
LoadIT

LoadtureInfrastrucloadIT +

=1+
LoadIT

LoadtureInfrastruc

After implementation of virtualization in data centers, power
usage effectiveness (PUE) , physical server consolidation
effects on usage of the power usage.

3. Problem Description

We consider the problem of energy-efficient allocation of
physical machines and virtual machines in cloud; we
compute the scheduling problem as following

Given a set of m virtual machines to be placed on a set of n
heterogeneous physical machines and each virtual machine
VMi requires pe processing elements , Mbytes of physical
memory, K bits of network bandwidth and the VMi will be
started at time (t) and completed the process at time (t+tn)
without using the migration. We concern three types of
computing resources such as processors, physical memory
and network bandwidth.

We assume that every host Hj can run any virtual machine
and power consumption model of Hj has a linear relationship
with CPU utilization.The objective of scheduling is exchange
between minimizing total energy consumption in usage of
maximum requirements of 'n' VMs, we contribute the below
mentioned constraints

Constraint 1: We can run virtual machine and virtual
machine migrated on identified host only.
Constraint 2: No Virtual machine request any resource is
larger than capacity of resource in the host.
Constraint 3: Let Pi(t) be the set of indexes of VMs that are
allocated to be host Hj, there is sum of total demand resource
of allocated VMs is less than or equal to maximum capacity
of the resource of the Hj. For every physical machine having
each processing elements Hj(1,2,3,....m);

In this paper we proposed new model to solve the
optimization of resource allocation problem for a group of
users send their request to the servers within a specified
interval of time. The main goal of this paper is to minimizing
the average requests to the servers and we introduce
integrated scheduling algorithms to schedule the virtual
machines efficietively in datacenters.

In this genetic algorithm , we approach optimization and
search technique based on the principles of genetic and
natural selection, and it categories into four steps (a)
Initialization (b) evaluation (c) exploitation (d) Exploration.
For each iteration the genetic algorithm selects individual’s
virtual machines at random from the current datacenters to
the servers and placed them optimal. To get optimal from the
datacenters we can created using below rules

1) Selection rules: Select the individuals virtual machines

from the servers which is having high configuration.
2) Crossover rules: To combine the virtual machines which

is having the same capacity of size, applications and also
users to optimal the next generation.

3) Mutation rules: To make them random changes to the
genes or properties of the individual servers to create
virtual machines.

Paper ID: SUB14365 578

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

In this paper we worked of resource scheduling algorithm
using the properties of the Full Bin packing algorithm ,
Round Robin , Priority, Modified Round Robin + Priority
scheduling algorithms, we compute the FBRRP scheduling
algorithm which is consider as parameters in most efficient
algorithm for allocating the virtual machines. Based on
demanding for allocating the resource in enterprises and
business marketing , number of users are access the different
types of services is increases due to the increase the
performance of resource allocation. We consider many
aspects to increase the performance of allocation resource
like Memory allocation for individuals virtual machines ,
High configuration CPU speed, Bandwidth[4-5]

3.1 Network Virtualization

Network Virtualization defined as logical networking
devices and services such as logical ports, switches, routers,
firewalls etc. We have designed based on sharing expensive
of hardware and software resources like virtualization,
provide access to the main servers from the different
locations. To get the best optimization of network design we
provide the best network design process to find the best
layout components like reliability, transmission delay and
cost[10].

In this approach we considering all terminal reliability and
we assumption all edges in the network are identical and cost
is depends on connected of two nodes. We make them as one
reliability and cost alternative nodes for each pair of nodes,
we will continue this approach to allow the edges to choose
from different components with different reliabilities and
costs. We used notations to describe the optimal design of
the network for connecting and allowing edges from the
different edges.

K: Number of options to connection for a edges
T: Option between the nodes
Xij: Edge option between nodes of i and j
r(Xij): Design option for reliability nodes
c(Xij): Unit cost of the edge option

Implementation: In genetic algorithm, for each network
design 'x', formed into an integer vector, we consider as a
chromosome, and each element of chromosome represents a
possible connection of edge in the network. For each
candidate architecture 'x' we have n × (n-1) ̸ 2 vector

components and the value of each element connected to the
specific edge with pair of nodes and connected with all
possible chromosome of 0,1,2,3,....... k-1 and we get the
possible network architectures is K(n×(n-1)) ̸2). To find the
minimum cost of network architecture, it exceeds pre
specified network reliability Rmin and we consider a
infeasible solution, breeding the feasible solution and
infeasible solution we get the good feasible solution.

To solve the cost effective in servers we can partition into
standard type and each server having their own energy
instead of supplying power to all servers as same.

Table 1: Power allocation different types of Servers
Server Type Server

Power
Network

Allocation
Storage

Allocation
1U app server 250W 0.2 0.1
Virtual Server 90W 0.4 0.2
Web Blade 200W 0.3 0.1
ERP blade 200W 0.1 0.4
Mainframe 4000W 0.1 0.5
3U-10U Server 2000W 0.1 0.1

In datacenter, each server has a standard power level
assigned allocation of power associated with networking and
storage. We classification about the servers based in the
power capacity.

• Assign all servers to a 'Server_Type '
• Assign to each user a number of servers form the

Server_Type based on the 'MHGA'
• Compute the total power from all servers and

normalize to compare the actual IT load power
• Implementation of PUE data to each server which is

assigned to a Server_Type.

3.2 Dynamic Load Balancing and Distribution
Algorithm (DLBDA):

We proposed DLBDA, which integrates the maximum
resources discovery based on the user demand , server
selection in the data center , virtual machine placement in the
servers and requests from the users. In datacenters, the load
balancing and distribution is working as per user demands,
and also performance of servers is good , no need to
implement DLBD algorithm. In some cases at a given
particular time period, the server capacity maintaining
overload and the server performance is decrease, reached the
threshold point. To find the all traffic load and network
proximity for each servers and separate the overload servers
and under loaded server[7]. To find the under loaded servers
list is selected and redirection to the overloaded servers list,
so that we can minimized the traffic load to increases the
performance of overloaded servers. For this we introduces
load balancing point to share the usable server and mapping
between the requests and allocate the set of suitable servers
from under loaded servers[8]. By implementing the DLBD
algorithm, we prevent web servers -- overloaded state and
also multiple servers can serve in a peak demand, these web
servers maintained the average load. If one of overloaded
server and their average load is decreases due to the users in
inactive and we can remove the web server at a time from the
list and also replication for serving requests states changes

Paper ID: SUB14365 579

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

into low priority[15]. When the users requests relinquish
over time and allocate sufficient under loaded resources
available to the datacenter and we can utilize them during the
heavy load to the servers.

Figure 1: Load Balancing

Dynamic Load Balancing and Distribution Algorithm
(DLBDA)
Step 1. Begin
Step 2. Switch on the all available servers in datacenter
Step 3. for all r € R do
Step 4. Search the list of all available servers n in different

datacenters
Step 5. for i =1 to n do
Step 6. Separate the Overloaded server list (OSL) and

Underloaded server list (USL)
Step 7. end for
Step 8. for j=1 to OSL do
Step 9. Calculate incoming traffic load to the servers list

based on the load balancing point (LBP)
Step 10. Measure network proximity from the OSL
Step 11. Calculate redirection to USL to minimization
Step 12. end for
Step 13. do
Step 14. Select OSL to optimal minimization
Step 15. Add LBP to OSL
Step 16. Redirected request to USL
Step 17. While alarm_flag = true
Step 18. if OSL > 1 then
Step 19. if OSL.avg Load <= alarm_LBP/2 then
Step 20. Remove least loaded server in OSL
Step 21. end if
Step 22. end if
Step 23. end for
Step 24. End

3.3 Virtual Machine Placement

To solve the problem of VM placement, we proposed
Modified Hybrid genetic algorithm with multiple fitness and
we divided the into two parts. First part is users requests to
the VM provisioning and placement on hosts and second part
is optimization of current allocation of VM's to get the
optimization of first part, we implementation of Modification
Hybrid genetic algorithm.

3.3.1 Initialization
To initialize a some part of the population and remaining part
of population is initialized randomly, and offspring is applied
by crossover between two parents selected randomly[11-12].
To improve the performance and bring the offspring to a
minimum of we used two methods Remove optimal and
local optimal and cost of the offspring is less than the cost of
the any one of the parents then the parent with higher cost is
removed from the population.[13] The offspring is added to
the population , if the cost of the offspring is greater than the
both of the parents then we make them as invalid. Shuffling
the random number is generated within one and if the
probability is less than the shuffling operator , randomly
selected is removed and sequence is randomized and added
to the population.[14]

Figure 2: VM Placement: MHGA

The flow diagram represents original placement information
and load for all the virtual machines and the second stage
MHGA executes the results and compared with the original
placement information.[9-10] If the results is satisfied in the
3rd stage we move into the migration stage otherwise
iteration will continue until the best optimal VM placement.
In the migration stage, it chooses the best Virtual machines
and also distances of the VM placements.

Paper ID: SUB14365 580

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 3: Flow Chat of MHGA

Algorithm A:

Step 1. Begin
Step 2. Initialize a first part of population using

Initialization heuristics algorithm
Step 3. Initialize remaining part of population by using

randomly
Step 4. Apply Remove optimal algorithm to all tours in the

initial population
Step 5. Apply Local optimal algorithm to all tours in the

initial population
Step 6. select two parents randomly
Step 7. Apply Crossover between parents and execute an

offspring
Step 8. Apply Remove optimal algorithm to offspring
Step 9. Apply Local optimal algorithm to offspring
Step 10. if offspring < any one of the parents then replace the

lowest offspring of the parent
Step 11. Shuffle any one of randomly selected from

population
Step 12. Repeat Step 3 and Step 4
Step 13. Until number of iterations to get the optimal

solution.
Step 14. End

For example, we consider a sequence of the cities ---A -----
B-C-----D-----E----F------------G-----H------K., having
distance for every city. In our scenario, Remove optimal , D
is the city to be removed to perform the operations , E is the
previous to the D and the next city is F, if the increases in the
tour length after removing C to E to the next position , we
decrease the tour length by moving into the remove city.

We can find out the decrease in the tour length: Decrease

= Dist(C,D) + Dist(D,E)-Dist(C,E)

I. Remove Optimal: From above Algorithm A, we defined
Remove optimal to increase the tour cost of city which is
badly long distance.

a. Create a list containing the nearest N cities to a
selected city.

b. Remove optimal, removes the selected city from the
tour and form a N-1 cities.

c. Selected city which is nearest , is to reinserted in the
tour and cost of the new tour length is calculated.

d. Continue the sequence which is produces the least
cost is selected

e. Repeat 1-4 steps for each city in the tour.

II. Local optimal: From above Algorithm A, we select n
consecutive cities (m1,m2,m3,m4,m5,....m n-1) from the
tour and it arranges cities with minimum distance
between the cities by searching all possible arrangements.

B. Crossover: To construct an offspring which is inheritance
and adaptive the all properties from the parents structures
and it acts an edge map. After getting the properties it stores
information about all the connections to lead the distance
between any two cities and each city have minimum two
edges, maximum four edge associations from each parent

Algorithm B:
Step 1. Begin
Step 2. Initial city from one of the two parents from the
selected city
Step 3. Remove optimal , all occurrence of the city which is
selected two parents from the edge of map
Step 4. Selected city has entries in its edgelist go to step 5
otherwise go to step 6
Step 5. Find city in the edgelist of the selected city and get
shortest edge from the tour, and broken randomly. go to
step3
Step 6. If the parents chosen to all visited cities then stop.
Otherwise randomly select an unvisited city and go to step 3
Step 7. Selected the city with least entries in its edge list as
the next selected city, choose the nearest city.
Step 8. End.

4. Simulation Results

 In genetic algorithm,. we implemented in C++ programming
language for maximizing the fitness function by using f(x) =
x2

 , and the value ranges of x from 0 to 30. We implemented
initial five populations of binary string and calculate x and
fitness value f(x) =x2. Use the tournament selection method
to generate every new five populations and apply the cross-
over operator for generating new populations. Apply
mutation operator for population to get the best fitness value.

Enter the number of Population in each iteration is: 5
Enter the number of iteration is: 5
Iteration 1 is:

S.No Population Worst Fitness Best Fitness
0 40269 0.40269 10.031417
1 1182511 1.82511 11.257072
2 1103802 1.03802 10.958928
3 1025375 0.25375 10.252110
4 1038920 0.3892 9.868195

 Sum: 52.367722

Paper ID: SUB14365 581

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 Average: 10.473544
 Maximum: 11.257072

 Iteration 2 is:
S.No Population Worst Fitness Best Fitness

5 1153524 1.53524 8.644072
6 31433 0.31433 9.864642
7 31433 1.3763 9.045399
8 8313 0.08313 10.042119
9 1074001 0.74001 9.298878

Sum: 46.895107
Average: 9.379022
Maximum: 10.042119

 Iteration 3 is:

S.No Population Worst Fitness Best Fitness
10 1186753 1.86753 11.619774
11 80292 0.80292 10.063322
12 158525 1.58525 9.255855
13 91516 0.91516 9.592331
14 103803 1.03803 10.959062

 Sum: 51.490341
 Average:10.298068
 Maximum: 11.619774

Iteration 4 is:
S.No Population Worst Fitness Best Fitness
15 1173828 1.73828 8.396161
16 64429 0.64429 10.632739
17 1099734 0.99734 9.900976
18 130327 1.30327 9.893287
19 1088392 0.88392 10.438623

 Sum: 49.261787
 Average: 9.852358
 Maximum: 10.632739

 Iteration 5 is:

S.No Population Worst Fitness Best Fitness
20 1149948 1.49948 10.060295
21 10010 0.1001 9.999846
22 130283 1.30283 9.911272
23 88675 0.88675 10.36997
24 17727 0.17727 9.883524

Sum: 50.224907
Average: 10.044981
Maximum: 10.36997
After the 5 Iterations, the Maximum Value is: 11.619774

Compare between Iteration 1 and Iteration 2

Best Fitness (0-4) Best Fitness (5-9)
10.031417 11.619774
11.257072 10.063322
10.958928 9.255855
10.25211 9.592331
9.868195 10.959062

Compare between Iteration 3 and Iteration 4

Best Fitness (10-14) Best Fitness (15-19)
10.060295 8.644072
9.999846 9.864642
9.911272 9.045399
10.36997 10.042119
9.883524 9.298878

Compare between Iteration 4 and Iteration 5
Best Fitness (15-19) Best Fitness (20-24)

8.644072 8.396161
9.864642 10.632739
9.045399 9.900976

10.042119 9.893287
9.298878 10.438623

Compare between Iteration 5 and Iteration 1

Best Fitness (20- 24) Best Fitness (0-4)
8.396161 10.031417

10.632739 11.257072
9.900976 10.958928
9.893287 10.252110

10.438623 9.868195

Graphs Representation for Best Fitness Function

Figure 4: Best Fitness Value

Figure 5: Compare between 5 iterations for Best Fitness

Function

Figure 6: Comparing between Number of Iterations

Paper ID: SUB14365 582

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

5. Conclusion

In this paper, we optimize the energy consumption in
datacenters in all levels. Our energy model is based on the
Dynamic voltage scaling and improves the load balances by
using Dynamic Load Balance Distribution Algorithm
(DLBDA). We address the resource allocation and solved by
adopting the features of Hybrid genetic algorithm and
implemented the Modified Hybrid Genetic algorithm
(MHGM) allocated the resources based on the Best Fitness
values from the Populations in every iteration levels.

6. Acknowledgment

This research was supported by the Computer Science and
Technology in Sri Krishnadevaraya University,
Anantapuramu, Andhra Pradesh.

References

[1] Enokido T, Aikebaier A, Takizawa M. Process

allocation algorithms for saving power consumption in
peer-to-peer systems. IEEE Transactions on Industrial
Electronics 2011; 58(6):2097–2105.

[2] Min-Allah N, Hussain H, Khan SU, Zomaya AY. Power
efficient rate monotonic scheduling for multi-core
systems. Journal of Parallel and Distributed Computing
2011. DOI: 10.1016/j.jpdc.2011.07.005.

[3] Buyya R. High-performance cluster computing:
architecture and systems. Upper Saddle River, NJ, USA:
Prentice Hall PTR; 1999.

[4] Kim FH, Beloglazov A, Buyya R. Power-aware
provisioning of virtual machines for real-time cloud
services.Concurrency and Computation: Practice and
Experience 2011; 23(13):1491–1505.

[5] Beloglazov A, Buyya R, Lee YC, Zomaya AY. A
taxonomy and survey of energy-efficient data centers
and cloud computing systems. Advances in Computers
2011; 82:47–111

[6] Y.-T. Wang, and R. J. T. Morris, "Load Sharing in
Distributed Systems," IEEE Transactions on Computers,
Vol. C-34, No.3, March 1985, pp. 204--21

[7] Xhafa F, Carretero J, Abraham A. Genetic algorithm
based schedulers for grid computing systems.
International Journal of Innovative Computing,
Information and Control 2007; 3(5):1053–1071

[8] Fonseca CM, Fleming PJ. An overview of evolutionary
algorithms in multiobjective optimization. Evolutionary
Computation 1995; 3(1):1–1.

[9] Khan SU. A self-adaptive weighted sum technique for
the joint optimization of performance and power
consumption in data centers. 22nd International
Conference on Parallel and Distributed Computing and
Communication Systems (PDCCS), USA, 2009; 13–18.

[10] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif,
“Black-box and gray-box strategies for virtual machine
migration,” in Proceedings of the 4th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI’07), 2007, pp. 229–242.

[11] Mejia-Alvarez P, Levner E, Mossé D. Adaptive
scheduling server for power-aware real-time tasks. ACM

Transactions on Embedded Computing Systems 2004;
3(2):284–306.

[12] Michalewicz Z. Genetic Algorithms + Data Structures =
Evolution Programs. Springer: Berlin Heidelberg New
York, 1992.

[13] Hotovy S. Workload evolution on the Cornell Theory
Center IBM SP2. Job Scheduling Strategies for Parallel
Proc. Workshop, IPPS’96, Honolulu, Hawaii, 1996; 27–
40.

[14] Xhafa F, Carretero J, Abraham A. Genetic algorithm
based schedulers for grid computing systems.
International Journal of Innovative Computing,
Information and Control 2007; 3(5):1053–1071.

[15] M.Aleksy, A.Korthaus, and M. Schader, “Design and
implementation of flexible load balancing service for
CORBRA- based applications,". in PDPTA;01: USA:
IEEE Computer Society, June 2001

Author Profile

C. Vijaya Kumar is currently a Ph.D, student in
the Department of Computer Science and Technology
from Sri Krishnadevaraya University. He received the
B.Sc degree in Computer science from Sri
Krishnadevaraya University and M.C.A from the Sri

Venkateswara University Tirupathi, in 2010, research interests
include Cloud Computing, Hadoop and Data mining.

Dr. G. A. Ramachandra is an Associate professor at
Sri Krishnadevaraya University. His research interests
are Data Mining, Computer Networks and Cloud
computing.

Paper ID: SUB14365 583

http://creativecommons.org/licenses/by/4.0/�

	Introduction
	Related Work
	Problem Description
	Network Virtualization
	Dynamic Load Balancing and Distribution Algorithm (DLBDA):

	Simulation Results
	Conclusion
	Acknowledgment

