An Empirical Study: Emotional Influence of Indian Classical Raagas on Face

Ashish A. Bardekar
CSE Department, SGBAU, Amravati
Sipna College of Engineering & Technology Amravati, (Maharashtra), India

Abstract: In this paper, we had studied that different types of classical raga music evokes different feelings and emotions. Certain raags produces peace happiness, cheerfulness, sad and Depression mood. According to Indian aesthetics, each poem or musical composition produces a certain rasa (emotion). Local Binary Patterns (LBP) have been well exploited for facial image analysis in the existing work; the LBP histograms are extracted from local facial regions, and used as a whole for the regional description. In this empirical paper we studied LBP Histogram (LBP) bins for the task of facial expression recognition while listening to Indian classical ragas. Our experiments illustrate that the selected LBP bins provide a compact and discriminative facial expression representation. The selected LBP bins will be used to obtain the best recognition performance rate on collected database. The local binary pattern (LBP) operator is defined as a gray-scale invariant texture measure, derived from a general definition of texture in a local neighborhood. Due to its discriminative power and computational simplicity, the LBP texture operator has become a popular approach in various applications, including visual inspection, image retrieval, remote sensing, biomedical image analysis, motion analysis, environment modeling, and outdoor scene analysis. Subjective evaluation shows that Indian classical raags evokes certain emotions & feelings which can be reflect on the human face and was evaluated using LBP approach.

Keyword: LBP, Facial Expression Analysis, Histogram, Classical raags, Emotional Face Expression.

1. Introduction

According to Indian aesthetics, each poem or musical composition produces a certain rasa (emotion). Some consider rasa as sentiment, but it is something subtle, even more than an emotion or empathy. Different types of music evoke different feelings and emotions. Certain sounds produce joy, others grief and yet others affection and tenderness. Rasa is essentially emotional reaction and awareness of it. The feeling may be pleasant or sad, high or low, sublime or ludicrous, actual or imaginary, furious or peaceful. By and large, each raga is supposed to evoke a single emotion. For example, the notes of Khamaj raga are said to create a Happiness mood. darbari raga is producing sad and gives a feeling of depression. During the past few years, we have witnessed a development of a computationally simple yet very efficient texture operator called Local Binary Patterns (LBP) [3]. The LBP operator is defined as a grayscale invariant texture measure, derived from a general definition of texture in a local neighborhood. Through its extensions, the LBP operator has been made into a really powerful measure of image texture, showing excellent results in terms of accuracy and computational complexity in many empirical studies. The LBP operator can be seen as a unifying approach to the traditionally divergent statistical and structural models of texture analysis. Perhaps the most important property of the LBP operator in real world applications is its tolerance against illumination changes. Another equally important is its computational simplicity, which makes it possible to analyze images in challenging real-time settings. The LBP method has already been used in a large number of applications all over the world, including visual inspection, image retrieval, remote sensing, biomedical image analysis, face image analysis, motion analysis, environment modeling, and outdoor scene analysis. More recent developments showed that the LBP approach also provides outstanding results in representing and analyzing faces in both still images and video sequences.

The image matching methods can be divided into the following three categories: regional matching, feature matching and phase matching. Feature-based matching method can match the remarkable and easy to find the human face of the feature points or point sets, feature matching primitive contains a satisfactory statistical characteristics and the flexibility of programming algorithms [1]. Analyzing facial images is very useful in several applications, like tracking and identification of persons, human-machine interaction, video conferencing and content-based image retrieval. Facial image analysis may include face detection and facial feature extraction, face tracking and pose estimation, face and facial expression recognition, and face modeling and animation. All these tasks are challenging due to the fact that a face is a dynamic and non-rigid object which is difficult to handle. Its appearance varies due to changes in pose, expressions, illuminations and other factors such as age and make-up. Therefore, one needs a facial representation that is robust to these factors. Ideally, the representation should be discriminative, compact and easy to compute. In this context, the LBP based facial representation provided excellent results that outperformed many state-of-the-art methods in several face related tasks. The approach has also inspired several other research groups, including works on face recognition, facial expression recognition, gender recognition, face detection, face authentication and shape localization. The success of using LBP in facial image analysis proves simplicity and efficiency of LBP as a local texture operator, for face representation [3].

Machine analysis of facial expressions, enabling computers to analyze and interpret facial expressions as humans do, has many applications such as human-computer interaction and computer animation; so it has attracted much attention in last two decades.
The most important properties of LBP features are their tolerance against monotonic illumination changes and their computational simplicity. In the original LBP-based facial representation, as shown in Fig. 3, face images are first equally divided into non-overlapping sub-regions to extract the LBP histograms within each sub-region, which are then concatenated into a single, spatially enhanced feature histogram.

Possible criticisms of this method are that dividing the face into a grid of sub-regions is somewhat arbitrary, as sub-regions are not necessary well aligned with facial features, and that the resulting facial representation suffers from fixed size and position of sub-regions. To address these, in, by shifting and scaling a sub-window over face images, many more sub-regions are obtained. Fig. 2 shows the selected sub-regions for each facial expression [7]. In most of the existing work, LBP histograms are extracted from local facial regions as the region-level description, where the n-bin histogram is utilized as a whole. However, not all bins in the LBP histogram are necessary to contain useful information for facial representation. It is helpful and interesting to have a closer look at the local LBP histogram at the bin level, to identify the discriminative LBP-Histogram (LBPH) bins for better facial representation.

This paper determines the emotional expression state of a person listening to different raga, emotional state such as happiness, sadness, surprise, neutral, fear and disgust, regardless of the identity of the face. In an approach to facial expression recognition, this problem is close to Indian classical ragas. Our experiments will illustrate that the LBP codes can be easily done in single scan through the image. The 256-bin histogram of the labels computed over a region can be used as a texture descriptor. The original LBP operator has been extended to consider different neighborhood sizes [2]. For example, the operator LBP_{4,1} uses only 4 neighbors while LBP_{16,2} considers the 16 neighbors on a circle of radius 2. In general, the operator LBP_{p,r} refers to a neighborhood size of p equally spaced pixels on a circle of radius R.

Possible criticisms of this method are that dividing the face into a grid of sub-regions is somewhat arbitrary, as sub-regions are not necessary well aligned with facial features, and that the resulting facial representation suffers from fixed size and position of sub-regions. To address these, in, by shifting and scaling a sub-window over face images, many more sub-regions are obtained. Fig. 2 shows the selected sub-regions for each facial expression [7]. In most of the existing work, LBP histograms are extracted from local facial regions as the region-level description, where the n-bin histogram is utilized as a whole. However, not all bins in the LBP histogram are necessary to contain useful information for facial representation. It is helpful and interesting to have a closer look at the local LBP histogram at the bin level, to identify the discriminative LBP-Histogram (LBPH) bins for better facial representation.

This paper determines the emotional expression state of a person listening to different raga, emotional state such as happiness, sadness, surprise, neutral, fear and disgust, regardless of the identity of the face. In an approach to facial expression recognition, this problem is close to Indian classical ragas. Our experiments will illustrate that the selected LBP bins provide a compact and discriminative facial expression representation. The selected LBP bins will be used to obtain the best recognition performance rate on collected database. The local binary pattern (LBP) operator is defined as a gray-scale invariant texture measure, derived from a general definition of texture in a local neighborhood. Due to its discriminative power and computational simplicity, the LBP texture operator has become a popular approach in various applications, including visual inspection, image retrieval, remote sensing, biomedical image analysis, motion analysis, environment modeling, and outdoor scene analysis.

2. Proposed Work

Facial Expression is one of the most powerful, nature, and immediate means for human beings to communicate their emotions and intentions. Due to its potential applications, facial expression recognition has attracted much attention over two decades. Though much progress has been made, recognizing facial expression with a high accuracy remains to be difficult due to the complexity and variety of facial expressions. With this approach we are performing an experimental study to find out while listening to classical ragas whether emotions are generated and how they get reflected on face. For this purpose to extract facial expression we are using an LBP approach.

A. LBP Approach to Face Analysis

Local Binary Pattern (LBP) features have performed very well in various applications, including texture classification and segmentation, image retrieval and surface inspection [4]. LBP is a simple but very efficient texture operator which labels the pixels of an image by Thresholding the 3*3 neighborhood of each pixel with the value of the center pixel and considers the result as a binary number. Fig. 1 shows an example of LBP calculation. The value of the LBP code of a pixel x_i is given by:

$$LBP_{p,r} = \sum_{p=0}^{p-1} s(g_p - g_c)2^p$$

Where g_c corresponds to the gray value of the center pixel (X_c, Y_c), g_p refers to gray values of P equally spaced pixels on a circle of radius R, and s defines a Thresholding function as follows:

$$s(x) = \begin{cases} 1, & x \geq 0; \\ 0, & \text{otherwise}. \end{cases}$$

The calculation of the LBP codes can be easily done in single scan through the image. The 256-bin histogram of the labels computed over a region can be used as a texture descriptor. The original LBP operator has been extended to consider different neighborhood sizes [2]. For example, the operator LBP_{4,1} uses only 4 neighbors while LBP_{16,2} considers the 16 neighbors on a circle of radius 2. In general, the operator LBP_{p,r} refers to a neighborhood size of P equally spaced pixels on a circle of radius R.

$LBP_{p,r}$ produces 2^p different output values, corresponding to the 2^p different binary patterns that can be formed by the P pixels in the neighborhood set. It has been shown that certain bins contain more information than others. Therefore, it is possible to use only a subset of the 2^p local binary patterns to describe the textured images. Fundamental pattern (called also "uniform patterns") as those with a small number of bitwise transitions from 0 to 1 and vice versa. For example, 00000000 and 11111111 contain 0 transitions while 00001100 and 01111000 contain 2 transitions and so on.

Accumulating the patterns which have more than 2 transitions into a single bin yields an LBP descriptor, denoted LBP_{u2,p,r}. With less than 2 transitions. For example, the number of labels for a neighborhood of 8 pixels is 256 for standard LBP and 59 for LBP_{u2,8}. For the 16-neighborhood the numbers are 65536 and 243, respectively.

B. Database

One of the most important aspects of developing any new recognition or detection system is the choice of the database that will be used for testing the new system. However, building such a ‘common’ database that can satisfy the various requirements of the problem domain and become a standard for future research is a difficult and challenging task. With respect to face recognition, this problem is close

Volume 3 Issue 12, December 2014

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

423
to being solved with the development of the student’s face database which has become a standard for testing face recognition systems. When compared to face recognition, face expression recognition poses a very unique challenge in terms of building a standardized database. This challenge is due to the fact that expressions can be posed or spontaneous. Thus, with the shifting focus

Figure 1: Example of an LBP calculation

LBP=1+4+16+32=53

Figure 2: Examples of an LBP based facial representation

of the research community from posed to spontaneous expression recognition, a standardized training and testing database is required that contains images and video sequences (at different resolutions) of people displaying spontaneous expressions under different conditions (lighting conditions, occlusions, head rotations, etc) The facial expressions of were recorded by a camera. The subjects were then asked about the true emotions that they had felt while listening to different raga. Their replies were documented on the listener response sheet against the recordings of the facial expressions.

3. Experimental Results

During the training, each subject was asked to listen to the classical raag i.e Raag Khamaj and Raag Darbari, the musical segments used were Man mohan shyam rasiya,a thumri based on raag Khamaj and vilambit khayal based on raag darbari and the Five expression classes were captured with the help of camera and tested. A simple binary tree tournament scheme with pairwise comparisons is used for classifying expressions. While listening to classical raag each subject recognized the emotion felt in the specific raag and thus the result achieved was 100%. The database contains 80 images in which 4 persons are expressing three or four times the five expressions. Experiments on the Students database which consists of 4 college students with age ranging from 20-23 years showed very good results. In the experiments, out of 4, 3 sequences from the student’s dataset were selected for basic emotional expression recognition tests. The selection criterion was that a sequence to be labeled is one of the five basic emotions. The

sequences came from 4 subjects, with one to five emotions per subject. The positions of the two eyes and Mouth in the frame of each sequence were fixed and then these positions were used to determine the facial area for the whole sequence. The whole sequence was used to extract the proposed LBP features. The LBP based approach was shown to be robust with respect to changes in illumination and errors in face alignment. Table I shows recognition rate(%) for classical raag by subject. Following figures shows images with their respective histogram and emotional expression.

Figure 3: Image of Peace with its Histogram

Figure 4: Image of Happiness with its Histogram

Figure 5: Image of cheerul with its Histogram

Figure 6: Image of Depressed with its Histogram
Figure 7: Image of Sad with its Histogram

Table 1: Recognition Rate (%) For Classical Raag By Subjects

<table>
<thead>
<tr>
<th>RAAG</th>
<th>Positive Valence</th>
<th>Negative Valence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peace</td>
<td>Happy</td>
</tr>
<tr>
<td>KHAMAJ</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>DARBAR</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

4. Conclusion

We have reported the result of the empirical study of listener's emotional reactions to classical Raag. We have established that classical raag music evokes different feelings and emotions. Classical raag Khamaj evokes emotion like peace, happiness, joy, whereas as raag Darbari evokes emotion like sad and depression. The LBP based facial representation outperformed for facial image analysis was used for several face related tasks. The approach includes work on emotional facial expression recognition while listening to Indian classical ragas.

References