
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 12, December 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Study of Execution Mechanism of Intelligent 
Mobile Agents 

 
Sanjay Yede1, Dr. V. N. Chavan2 

 
1P.G. Department of Computer Science and Technology, Degree College of Physical Education, HVPM, Amravati-444605, India 

 
2Head, Department of Comp. Sci, Seth Kesarimal Porwal College, Kamtee, Nagpur, India 

 
 
Abstract: Mobile agents are programs that are moved from one source computer and roam among a set of networked servers until they 
fulfill their task. They have the ability to acquire knowledge by transporting themselves from one place to another. While moving from 
host to host they execute in agent execution environment called as ‘Agent Meeting Point (AMP)’ at each host. Upon arrival at an AMP, 
service requests are resolved to determine if the desired services are available at that AMP. If sufficient resources are available and 
permitted the constituent parts of the agent are passed to the services and agent starts execution. The central objective of this paper is to 
study architecture of Mobile Agents and functioning of Agent Meeting Point (AMP) an abstraction that supports interaction of agents 
with each other and server based resources. 
 
Keywords: Mobile-program, Agent-Meeting-Point-(AMP), KQML, APL, Execution-Environment 
 
1. Introduction 
 
Mobile agent is a program that is dispatched from one 
computer and travel in a network until it accomplishes its 
goal. This is an extension to the client/server model in which 
the client sends requests to the server for execution, which 
executes it and responds with results if it can satisfy the 
request or an error otherwise. The Mobile Agents do migrate 
among different hosts in a network looking for a host that 
can perform task at hand or for collecting required 
information [2,5].  
 
 The Internet contains an enormous number of computers, 
which are capable of providing specific services, and are 
comprised of a wide variety of processors, operating 
systems, databases, frameworks, and applications. The 
mobile agent framework makes these heterogeneous servers 
to offer many advantages like host-independent execution 
environment, standard agent communication languages, 
authenticated access to server resources, and secured 
auditing and error recovery mechanisms [3]. The central 
objective of this paper is to discuss architecture and working 
of ‘Agent Meeting Point’ an abstraction that supports the 
interaction of mobile agents with each other and other 
resources.  
 
2. Motivations Behind Developing Mobile 

Agents 
 
There are many different motivations behind development, 
distribution and use of such Agents. These motivations are 
divided into two categories: 
1. The support for mobile and lightweight devices, such as 

laptops, palmtops, PDA’s etc., and,  
2. The emerging need for an asynchronous method of 

searching for information or transaction services in 
corporate networks  

For example, 
1. The ability of agents to make lightweight mobile 

computers to interact with heavyweight applications 

without prior, detailed knowledge of the remote server’s 
capabilities. 

2. The ability of the agents to integrate knowledge from the 
client and server and perform inference based on it.  

3. Facilitate creation of personalized services by 
customizing agents which can then reside at server. 

4. The agents facilitate high-bandwidth communication to 
search through large free text databases. 

5. Their ability to reduction of overall communication 
traffic over the low bandwidth networks employed by 
mobile computers. 

 
3. Working of Mobile Agents 
 
The Mobile agents have the ability to move from place to 
place and acquire knowledge about the system and available 
resources. Generally, it is initialized with the user’s task and 
launched from a client application. It is then transmitted 
through a channel over a network to accomplish the task 
assigned to it. The sending client may specify a destination 
service directly, but desirably the client more likely send the 
agent initially to a yellow page server, which in turn 
proposes servers to be visited to fulfill the user’s task. When 
the agent reaches a server, it is delivered to an agent 
execution environment, called as Agent Meeting Point 
(AMP) [6]. Upon arrival at an AMP, the agent’s external 
wrapper is inspected for authentication. After validation, the 
AMP examines the agent’s description of it self. 
Ontologically named service requests are resolved to 
determine if the desired services are available at that AMP. If 
sufficient resources are available and permitted the 
constituent parts of the agent are passed to the services. The 
executable portions of the agent are then started. In some 
cases the mobile agent interact directly with server resources 
via proxy objects, which enable access control to be 
enforced. In other cases, it interact with a static agent 
resident at the AMP.  
 
Static agents enable the server’s function to be personalized 
by the server’s owner or by users. When the agent 
successfully completes its task at this server, it collects its 

Paper ID: SUB14310 788

http://creativecommons.org/licenses/by/4.0/�


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 12, December 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

state, including information acquired at the server, and 
request to be transported to a new host. Or, it may launch a 
smaller agent to deliver the acquired information to the 
sending client or to another server while it terminates. This 
ability means that the agent is not merely a program executed 
at a remote host and then returned to its origin, but a moving 
process that progressively accomplishes a task by moving 
from place to place. 
 
If the agent proves to be unauthorized, or if the meeting point 
is unable to provide the agent with the resource it has 
requested, the AMP takes action based on the agent’s header. 
It may discard the agent, it may send the indicated party a 
description of the failure, or if it is capable it may propose 
one or more AMP’s to satisfy the request.  
 
4. Structure of Mobile Agent 
 
The basic structure of a mobile agent is divided into three 
distinct portions: the Agent Passport, the Table Of Contents 
(TOC), and the Components. 
 
a) Agent Passport: Agent passport consists of the basic 

information required to permit the agent to move from 
one AMP to another [6]. It includes, 
• Authentication of Originator: This certificate includes 

the name or the authority of the request’s owner and 
the name or names of other authority sanctioning 
entities. The certificate carries identity of the originator 
of the agent and the “network name” of the business 
server.  

• Error Actions and Addresses: This is the action the 
AMP should take when an error occurs while 
processing the agent. Some possible actions include: 
discarding the agent without comment; delivering an 
error notification to a specified address; routing the 
agent to another AMP. 

• Goals and Status Information: This information 
includes a representation of the agent’s goal, and can 
include its relationship to other agents and their goals. 
Note that this agent may be the child of an agent 
present at the AMP, returning after an assignment from 
that parent. In some cases, the agent may require the 
AMP to notify an external entity (another agent or a 
client) of its status or progress based on some specified 
condition. The address of the external entity and the 
conditions are provided in this information. 

 

 
Figure: Agent Format 

 
 
 

b) Table Of Contents  
 TOC for the body of an agent provides a map of its 
structure. Each component has a size, type and importance. 
The size, as expected, is the size of the component. The type 
field contains a simple representation of what is required to 
process the component. The importance field describes 
whether the component is necessary for the agent to be 
instantiated at the AMP. This permits agents to carry obscure 
components through AMP’s that do not support these 
components, and to avoid unpacking components that will 
not be used at any AMP.  
 
c) Agent Languages 
Agent Programming Languages 
 One of the basic goals of agent framework is that it should 
support a broad range of languages. In fact, any executable 
environment that supports the architecture of the AMP can 
be chosen. However, some languages are more suitable for 
writing mobile agents than others [6]. High level and Object 
Oriented Programming provide several advantages for 
building agent frameworks. The object abstraction provides a 
good leverage point for access control and data mobility. 
Other desirable attributes for an agent programming 
language are discussed below. 
 
• Mobility Hooks : Mobility is a key feature of mobile 

agents, so it is desirable that an agent language easily 
support moving the agent [5, 6]. However, agent 
language support is not enough and some standardized 
primitives will be needed to invoke the collection of an 
agent’s parts and the movement of the agent from one 
AMP to another.  

• Fork/Spawn construct : As with mobility, mobile agents 
frequently desire to split up their processing among 
multiple copies of themselves at multiple AMPs or spawn 
agents to traverse the network. Again it is not necessary 
that the language expressly include support for this as 
primitive, as some standardized primitives will have to be 
provided by the environment. 

• Distributed Computing : Being mobile, agents have to 
rely on networking protocols and deal directly with a 
Distributed Computing Environment. It is desirable for 
the agent language to provide constructs that help 
programmers manage issues related [4, 9] to DC. The 
ability to create proxy objects to represent remote objects, 
advertising Remote objects to the environment, broking 
the requests, expressing synchronization points between 
multiple threads of execution, constructs to manage 
objects shared between execution environments are the 
examples of this sort of support.  
 

d) Knowledge Representation Languages 
Languages for knowledge representation (KR) provide the 
means to express goals, tasks, preferences, beliefs, and 
vocabularies appropriate to various domains. Such goals and 
beliefs may take the form of facts, rules, other logical 
formulae, defaults, probabilities and utilities, fuzzy sets and 
logic, neural networks, and plan and action operators, to 
name a few. A Language is often associated with 
vocabularies used to describe predicates and functions out of 
which belief and goal expressions are syntactically built.  
 
 

Paper ID: SUB14310 789

http://creativecommons.org/licenses/by/4.0/�


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 12, December 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

5. Moving Programs and Accumulated State 

5.1 Moving Programs 
 
Concerning the movement of mobile agents, two possibilities 
exist: a simple case where the agent is a program that runs to 
completion at the agent’s destination, and a more complex 
case in which an agent program begins executing at one 
AMP and then decides to move, complete with its current 
state, to another AMP [9]. In the simple case, the program 
can be encoded, loaded, and run until it signals completion. 
This can be done with only a few changes to an existing 
execution engine. 
 
In the more complex case in which a program wishes to 
move from one server to another in mid execution, an 
important question arises how to extract the program’s 
variables and state from the execution environment and 
insert them into another execution engine.  
 
Briefly, there are several approaches to the problem of 
moving executing programs. One of the easiest is to allocate 
all information associated with the program’s execution on 
the program stack and transport the stack, along with the 
engine, from one execution environment to another [5]. 
Another approach involves keeping a registry of variables as 
they are created and moving the registry and the variables. In 
these two cases and other similar schemes, more extensive 
changes are required to the execution environment. 
 
5.2 Accumulated State 
 
An agent traversing several servers within a network of 
servers may need to accumulate information derived at each 
of the servers it visits. Agents accumulate this information 
through two primary mechanisms: by adding new objects 
containing the new information and state to its existing 
collection of objects, or capturing state through changes 
within its existing collection of objects. 
 
Consider an agent that is searching for information matching 
some specific request. As the agent traverses the network of 
servers, it adds these matching documents to its collection of 
items. Note that many of these items could be marked as 
cargo in the TOC and not be instantiated as the agent visits 
various AMPs. 
 
State can also be captured within an agent’s existing 
collection of objects. The degenerate case of this is an agent 
that consists of a single object, that is, an executable program 
and its execution context. An agent searching for the lowest 
price offer for a specific item need only carry the current 
lowest bid (and the identity of the bidder) in a local variable 
within its execution context. As the agent moves from AMP 
to AMP, the program and its context are saved, moved, and 
restored. 
 
5.3 Agent Meeting Point Structure 
 
Agent Meeting Point consists of a set of classes designed to 
provide a very lightweight framework for building agent 
meeting points. The framework provides functionality for 
basic services like registering the services that a specific 

AMP will use, a Shallow Request Handler, that will permit 
components that snap into the framework to express what 
function they provide in terms of a simple knowledge 
representation scheme. The framework provides a 
sufficiently rich and robust description of the AMP while 
allowing for incremental development and extension of the 
AMP structure. 
 
The structure supports basic agent interaction and can be 
easily expanded to support a broad range of service types and 
interaction models. The approach is to articulate an 
underlying set of component frameworks that focus on 
building a minimum set of services for registering and 
routing work within the AMP. 
 
On top of the Shallow Request Handler and the base 
components are defined additional parts that provide specific 
services. These parts center on the Deep Request Handler 
and the Linguistic Registry, the focus for managing more 
complex knowledge representation and semantic issues. 
 
5.4 Communication Services 
 
Agents can communicate remotely with other agents or 
AMPs by exchanging messages. The messages directed to 
components and agents residing within the AMP are handled 
by Communication Portals which utilize the Shallow 
Request Handler to direct such messages into the AMP. They 
can also manage arrival and departure of mobile agents. The 
Communication Portals support protocol handlers, which 
manage communication based on a specific protocol, and 
location objects, which provide methods to send agents and 
messages to abstract locations. 
 
The Communication Portals extract the arriving mobile agent 
and pass it to the mobile agent concierge for authentication, 
along with a location-object representing its location. They 
also mask the underlying transport service and transport-
specific details such as media, header, trailers, and data 
representation. The actual communications may be based on 
session oriented protocols or message oriented protocols. 
 
5.5 Request Handler 
 
The Request Handler acts as the interface between agents 
and the components of the AMP. Sometimes the job of 
request handling is seen to be divided into two different 
levels, the one at which trivial requests are handled and the 
other at which the requests for detail services are handled. 
The request handling components at these levels are named 
as Shallow Request Handler and Deep Request Handler 
respectively. The Shallow Request Handler uses description 
of the components form registry to route requests from 
agents to the components that support them. It uses a limited 
vocabulary to match user requests with available services. 
They can also recognize requests expressed in forms of 
notation beyond its vocabulary. In such cases, it checks its 
cache for a translated version of the request. If it does not 
find one it sees if the Linguistic Registry has the vocabulary 
registered, and if so, passes the request to the Deep Request 
Handler for translation. 
 

Paper ID: SUB14310 790

http://creativecommons.org/licenses/by/4.0/�


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 12, December 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

The Deep Request Handler on the other hand helps the 
Shallow Request Handler deal with more special or difficult 
requests. It maps a request by an agent into one or more 
service destinations, which may be another service or 
another agent, either in this same AMP or at a remote server. 
The Deep Request Handler provides, in effect, an extended 
directory service. It can be viewed as a kind of facilitator, 
and hence as itself a kind of agent. An interesting case occurs 
when the service destination is another agent that performs a 
similar task, that is, a facilitator agent. Generally, an 
alternative aspect of the Deep Request Handler is the 
provision of a “social directory” of other agents, which may 
include their identities, interests, languages, vocabularies, 
and addresses. 
 
5.6 Resource Manager 
 
The proper management of resources in the AMP and control 
of the services is governed by the Resource manager. It 
serves two primary purposes. On one hand it acts as a 
registry for all of the active agents within the AMP and the 
resources associated with these agents; on the other hand it 
serves as the controller for managing the use of resources 
within the AMP. It also keeps track of current resource 
allocation. The Resource Manager can also act as a firebreak 
against the excessive use of resources by agents. Either the 
total permitted resources can be limited, or the rate at which 
the resources are consumed can be controlled. 
 
5.7 Agent Execution Environments 
 
These are execution environments that have registered to the 
AMP, offering to interpret scripts or agents whose encoding 
they support. In addition to registering their named 
environment with the meeting point, the Agent Execution 
Environments must provide access to the base facilities of 
the agent meeting point. This includes access to all of the 
exported object encapsulations.  
 
6. Conclusion  
 
This paper presents an overview of architecture for Mobile 
Agents and the structure of Agent Meeting Point, a platform 
for communication for agents within an execution 
environment. A framework is discussed that supports mobile 
agents. This framework provides a secure facility that can 
support interaction between agents requiring diverse 
execution environments, communicating via multiple 
languages, and traveling via multiple transport services. 
 
References 

 
[1] Devadithya T, Chiu K, Huffman K and McMullen DF, 

“The Common Instrument Middleware Architecture: 
Overview of Goals and Implementation”, in 
Proceedings of IEEE International Conference on e-
Science and Grid Computing (e-Science 2005), 
Melbourne, Australia, December 5-8, 2005. 

[2] Foster I, Czajkowski K, Ferguson D E, Frey J, Graham 
S, Maguire T, Snelling D and Tuecke S, “Modeling and 
Managing State in Distributed Systems: The Role of 
OGSI and WSRF” , in Proceedings of the IEEE 
93(3):604-612, Mar 2005.  

[3] Satoh I, “Building and Selecting Mobile Agents for 
Network Management”, Journal of Network and 
Systems Management, vol.14, no.1, pp.147-169, 
Springer, 2006. 

[4] Rafael P, Cristina S and Jodie F, “Cooperative Itinerant 
Agents (CIA): Security Scheme for Intrusion Detection 
Systems”, In the proceedings of International conference 
on Internet surveillance and Protection (ICISP), 2006.  

[5] Papastavrou S, Pitoura E and Samaras G, “Mobile 
Agents for WWW Distributed Database Access”, 
Technical Report TR 98-12, Univ. Of Cyprus, Computer 
Science Department, Sept. 98. 

[6] George S and Evaggelia P, “Computational Models for 
the Wireless and Mobile Environments”, Technical 
Report TR-98-4, University of Cyprus, Computer 
Science Department, 2010. 

[7] Aridor Y and Lange D, “Agent Design Patterns: 
Elements of Agent Application Design”, in Proceedings 
of Autonomous Agents'98. ACM Press. 1998.  

[8] Jim White, “Mobile Agent White Paper”, general 
Magic, 1996. 

[9] Satoh I, “Building and Selecting Mobile Agents for 
Network Management”, Journal of Network and 
Systems Management, vol.14, no.1, pp.147-169, 
Springer, 2006. 

[10] Satoh I, “A Location Model for Smart Environment, 
Pervasive and Mobile Computing”, vol.3, no.2,pp.158-
179, Elsevier, 2007. 

[11] Satoh I, “Context-aware Agents to Guide Visitors in 
Museums”, in Proceedings of 8th International 
Conference Intelligent Virtual Agents (IVAb08), 
Lecture Notes in Artificial Intelligence (LNAI), 
vol.5208, pp.441-455, September 2008. 

Paper ID: SUB14310 791

http://creativecommons.org/licenses/by/4.0/�

	Agent Programming Languages
	5.3 Agent Meeting Point Structure
	This paper presents an overview of architecture for Mobile Agents and the structure of Agent Meeting Point, a platform for communication for agents within an execution environment. A framework is discussed that supports mobile agents. This framework p...
	References





