Environmental Effects of Growing E Waste

Mamta Gupta
Junior Engineer, Power Development Deptt. Jammu (J&K), India

Abstract: Waste Electrical and Electronic Equipment (WEEE) or E-Waste refers to obsolete, unwanted Electrical/Electronic devices that have reached end of life. As per United Nations Environment Programme (UNEP) report, by the year 2020, E-Waste may rise by 500% from old computers, no. of discarded refrigerators will get doubled or tripled while the rate of discarding mobile phones will be 18 times higher as compared to 2007 levels. Broadly E waste consists of plastics, glass, printed circuit boards, ceramics, rubber, ferrous and non-ferrous metals, elements like lead, mercury, cadmium, silver, gold, platinum etc. 95% of this waste is headed towards urban slums of developing countries like India and China for disassembly by an informal sector. Using rudimentary techniques such as open burning of Poly Vinyl Chloride (PVC) wires, acid bath, use of chemicals such as Mercury and Cyanide, heating of lead solders, etc., results in severe environmental damage. As a result of improper treatment of E-Waste, hazardous reaction products such as dioxins or furans formed by incineration/inappropriate smelting of plastics with halogenated flame retardants are released in the environment. Disposal of e-waste to landfills and incinerators causes irreversible environmental damage by polluting water and soil and contaminating air. Lead concentrations in dust samples collected from some workshops in China were hundreds of times higher than typical levels of household dusts. The levels of dust collected from similar Indian workshops were 5-20 times more than background levels.

Keywords: Electronic waste, Management, Environmental Effects, Emissions, Awareness, Policy, Categorization

1. Introduction

1.1 How E Waste is a Growing Problem?

Electrical/Electronic devices that have reached their end of life are referred as E-Waste. It can be categorized into three main categories:

- Large Household Appliances – Refrigerators, Washing Machines etc.
- It & Telecom Equipment – PCs, Monitors, Laptops etc.
- Consumer Equipments – TVs

WEEE contains more than 1000 different substances which fall under ‘hazardous’ and ‘non-hazardous’ categories. Broadly it consists of plastics, glass, printed circuit boards, ceramics, rubber, ferrous and non-ferrous metals, elements like lead, mercury, cadmium, silver, gold, platinum etc. The presence of elements like lead, mercury, palladium etc. beyond threshold quantities classifies the E-Waste as hazardous.

As per United Nations Environment Programme (UNEP) report, by the year 2020, E-Waste may rise by 500% from old computers; no. of discarded refrigerators will get doubled or tripled while the rate of discarding mobile phones will be 18 times higher as compared to 2007 levels. In order to avoid high cost of E-Waste treatment and disposal, developed countries like USA, UK and Japan have been trying to send such waste overseas to developing countries like India, China and Africa.

2. Current Handling of E-Waste

95% of this hazardous waste is processed and recycled by an informal sector, characterized by small-scale, labour-intensive, largely unregulated and unregistered, low-technology manufacturing or provision of services. Such enterprises do not pay taxes, have no trading license and are not included in social welfare or government insurance schemes. In the context of municipal solid waste management (MSWM), the informal recycling sector refers to the waste recycling activities of scavengers and waste pickers.

Informal waste recycling is carried out by poor and marginalized social groups who resort to scavenging/waste picking for income generation and some even for everyday survival. This is widespread throughout urban areas of the developing world and it is reported that up to 2% of the population in Asian and Latin American cities depend on waste picking to earn their livelihood.

Application of inefficient and non scientific methods increases the risk of environmental and occupational hazards. Samples collected from and around recycling facilities available in India at Seelampur, Jafrabad, Shastri Park, Mayapuri, Burari and adjoining areas of Delhi establish that lead, cadmium, acids and organic contaminants were being released into the environment.

According to Toxics Link, more than 10,000 people—again, including children—work in the “informal” recycling industry in Delhi alone, breaking equipment; using acid baths; and openly burning wires and plastic casings to reclaim gold, copper, and other valuable materials.

Since the informal sector operates without any government intervention, people from the lower strata of society employed in these recycling units are prone to various health problems due to lack of protection (no masks, no gloves). Long-term exposure to metals like lead, cadmium, chromium, mercury and polyvinyl chlorides (PVC) can severely damage the nervous systems, kidney and bones, and the reproductive and endocrine systems, and some of them are carcinogenic and neurotoxic.

Inappropriate recycling generates significant hazardous emissions, with severe impacts on health and environment.
In this context, three levels of toxic emissions have to be distinguished:

- **Primary emissions**: Hazardous substances that are contained in e-waste (e.g. lead, mercury, arsenic, polychlorinated biphenyls (PCBs), fluorinated cooling fluids etc.).
- **Secondary emissions**: Hazardous reaction products of e-waste substances as a result of improper treatment (e.g. dioxins or furans formed by incineration/inappropriate smelting of plastics with halogenated flame retardants).
- **Tertiary emissions**: Hazardous substances or reagents that are used during recycling (e.g. cyanide or other leaching agents, mercury for gold amalgamation) and that are released because of inappropriate handling and treatment.

In order to cater to this emerging problem, some authorized recycling companies have come up in India in the last few years like Attero Recycling Plant – Roorkee, Ash Recyclers – Bangalore, E Waste Agency (EWA) – Bangalore etc. In such centres, heavy metals are safely extracted in a plant and everything else is recycled. But the irony is the authorized e-waste recycling facilities in India capture only 3% of the total e-waste generated; the rest makes its way to informal recycling yards in major cities like Delhi, Mumbai, and Bangalore. This is because businesses sell their discarded IT and other equipment to informal recyclers for quick money without realizing the hazardous implications it has on health and environment.

Health Effects

<table>
<thead>
<tr>
<th>Source of e-wastes</th>
<th>Constituent</th>
<th>Health effects</th>
</tr>
</thead>
</table>
| Solder in printed circuit boards, glass panels and gaskets in computer monitors | Lead (PB) | • Damage to central and peripheral nervous systems, blood systems and kidney damage.
• Affects brain development of children. |
| Chip resistors and semiconductors | Cadmium (CD) | • Toxic irreversible effects on human health.
• Accumulates in kidney and liver.
• Causes neural damage.
• Teratogenic. |
| Relays and switches, printed circuit boards | Mercury (Hg) | • Chronic damage to the brain.
• Respiratory and skin disorders due to bioaccumulation in fishes. |
| Corrosion protection of untreated and galvanized steel plates, decorator or hardener for steel housings | Hexavalent chromium (Cr) VI | • Asthmatic bronchitis.
• DNA damage. |
| Cabling and computer housing | Plastics including PVC | Burning produces dioxin. It causes
• Reproductive and developmental problems;
• Immune system damage;
• Interfere with regulatory hormones |
| Plastic housing of electronic | Brominated flame | • Disrupts endocrine system functions |

Environment Effects

<table>
<thead>
<tr>
<th>Source of E waste</th>
<th>Process Followed</th>
<th>Environmental Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode Ray Tubes (CRTs)</td>
<td>Breaking, Removal Of Copper yoke and dumping</td>
<td>Heavy metals like Lead, Barium leach into ground water and release toxic phosphor</td>
</tr>
<tr>
<td>Printed Circuit Boards</td>
<td>Desoldering and removing chips</td>
<td>Brominated dioxins, beryllium, cadmium and mercury are emitted in the air</td>
</tr>
<tr>
<td>Chips and other gold plated compounds</td>
<td>Chemical stripping using nitric and hydrochloric acids along river banks</td>
<td>Hydrocarbons discharged directly into water acidsifies the river destroying fish and flora</td>
</tr>
<tr>
<td>Plastics from computer and peripherals</td>
<td>Shredding and low temperature melting</td>
<td>Emission of brominated dioxins, heavy metals and hydrocarbons in air</td>
</tr>
<tr>
<td>Dismantled printed circuit board processing</td>
<td>Open burning of waste boards</td>
<td>Tin and lead contamination of immediate environment</td>
</tr>
<tr>
<td>Wires</td>
<td>Open burning to recover copper</td>
<td>Hydrocarbons and ashes including PAHs discharged into air, water and soil.</td>
</tr>
</tbody>
</table>

In order to cater to this emerging problem, some authorized recycling companies have come up in India in the last few years like Attero Recycling Plant – Roorkee, Ash Recyclers – Bangalore, E Waste Agency (EWA) – Bangalore etc. In such centres, heavy metals are safely extracted in a plant and everything else is recycled. But the irony is the authorized e-waste recycling facilities in India capture only 3% of the total e-waste generated; the rest makes its way to informal recycling yards in major cities like Delhi, Mumbai, and Bangalore. This is because businesses sell their discarded IT and other equipment to informal recyclers for quick money without realizing the hazardous implications it has on health and environment.

4. Discussion - Steps of Action Required

Introducing a legal industrial set-up for disposal and recycling of E-Waste would not only remove the threat to environment and public health but also generate an opportunity of employment. For the purpose, consumer-manufacturer collaboration is the key.

- **Awareness Building** - Working Groups comprising Regulatory Agencies, NGOs, Industry Associations, experts etc are required to create awareness among consumers regarding the potential threat to public health and environment by electronic products, if not disposed properly. In order to dispose E-Waste scientifically, partnerships of municipal bodies with manufacturers and retailers can help in starting recycling services. Government should promote Information, Education and
Communication (IEC) activities in schools, colleges, industry etc. to enhance the knowledge base on E-waste management.

- **Policy Level Interventions** - An integrated IT waste management policy is the need of hour. A separate set of rules need to be implemented to control the processes.
 a) E-Waste Assessment should be carried out at national level with the help of state municipal bodies.
 b) Establishment of E-Waste collection, exchange and recycling centers should be encouraged in partnership with private entrepreneurs.
 c) Categorization of E-Waste components for testing and separation of harmful materials is required so that effective precautionary measures should be taken to save the environment.
 d) Regulations for ensuring occupational health safety norms for the current informal sector of E-waste recycling can prevent the work force from severe health hazards.

- **Restructuring Recycling** - Most of the current processes followed for recycling need improvement while some need to be abolished due to severe risks for health and environment. Technical intervention must be sought for creating electronic components and peripherals of bio degradable material.

- **Take Back Policies** - Under Extended Producer Responsibility (EPR) approach, the global brands using developing countries as markets for the sale of their products should be compelled to start Take Back services also. End of life Management has to be a priority for companies putting new electronic products in market.

5. Conclusion

Though the growing E-Waste Management happens to be a big challenge but if tackled judiciously it can be a way of recovering valuable resources from the waste as well as generating employment from E-Waste Treatment and Processing. Conventional methods must pave way for scientific recycling of E-Waste to avoid environmental and occupational hazards.

References

[3] EMPA. “MODELS FOR e WASTE MANAGEMENT”
[9] Violet N. Pinto, Department Of Community Medicine & Dr.D.Y.Patil, Medical College and Hospital, Nerul, Navi Mumbai “E-waste Hazard : The Impending Challenge”
[10] www.ewaste.in
[11] Violet N Pinto, Department of Community Medicine, Patil Medical College & Hospital , Navi Mumbai “E Waste Hazard : The Impending Challenge”