
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Survey on Detection and Prevention of SQL
Injection Attack

S. M. Chaware1, Sujata S. Wakchaure2

1, 2Pune University, Maharashtra, India

Abstract: Many software systems include a web-based component that makes them available to the public via the internet and can
expose them to a variety of web-based attacks. One of these attacks is SQL injection which can give attackers unauthorised access to the
databases. This paper presents an approach for protecting web applications against SQL injection. Pattern matching is a system that can
be utilized to distinguish or recognize any abnormality parcel from a consecutive activity. This paper also presents a recognition and
avoidance strategy for protecting SQL Injection Attack (SQLIA) utilizing Aho-Corasick pattern matching calculation Furthermore, it
focuses on different mechanisms that can detect several SQL Injection attacks.

Keywords: SQL Injection attack, Pattern matching, Static pattern, Dynamic Pattern, Anomaly Score

1. Introduction

SQL injection vulnerabilities have been depicted as a
standout amongst the most genuine threats for Web
applications [4][1]. Web applications that are powerless
against SQL injection may permit an attacker to addition
complete access to their fundamental databases. Since these
databases frequently contain sensitive consumers or client
data, the ensuing security infringement can incorporate
wholesale fraud, loss of secret data, and misrepresentation.
At times, attackers can even utilize a SQL injection
defenselessness to take control of and degenerate the system
that has the Web application.

Web applications that are defenseless against SQL Injection
Attacks (SQLIAs) are across the board. Truth be told,
SQLIAs have effectively focused on prominent exploited
people, for example, Travelocity, Ftd.com, and Surmise Inc.
SQL injection alludes to a class of code-injection attacks in
which information gave by the client is incorporated in a
SQL query in such a path, to the point that piece of the
client's input is dealt with as SQL code. By leveraging these
vulnerabilities, an attacker can submit SQL summons
straightforwardly to the database. These attacks are a
genuine risk to any Web application that gets input from
clients and consolidates it into SQL questions to a
fundamental database. Most Web applications utilized on
the Web or inside big business systems work thusly and
could in this manner are helpless against SQL injection.

A standout amongst the most productive instruments to
shield against web attacks utilizes Interruption Discovery
System (IDS) and Network Intrusion Detection System
(NIDS). An IDS utilizes abuse or abnormality location to
protect against attack [3]. IDS that utilization oddity
recognition system makes a gauge of typical use patterns.
Abuse identification strategy utilizes particularly known
patterns of unapproved conduct to foresee and locate
resulting comparable sort of attacks. These sorts of patterns
are called as signature [8][3]. NIDS are not help for the
administration situated applications (web attack), in light of
the fact that NIDS are working lower level layers [4].

2. Related Work

Beuhrer et. al. [6] has described a technique to prevent and
to eliminate SQL injection attacks. The technique ibased on
comparing, the parse tree of the SQL statement before
inclusion of user input with the one that resulting after
inclusion of input, at run time. This system implementation
is intended to minimize the efforts the programmer needs to
take; because, it automatically captures, both the actual
query and the intended query and that too, with minimal
changes necessarily to be done by the programmer.

Saltzer and Schroeder [7] propose a security system against
the attacks similar to SQL Injection. They proposed a
system using various stages. One of them was the fail-safe
defaults, on which the positive tainting is dependent or
follows, expresses that a conservative configuration must be
focused around contentions why objects should to be open,
as opposed to why they should not. In an expansive
framework a few objects will be insufficiently considered,
so a default of absence of permission is more secure.

An outline or usage botch in a component that gives
unequivocal permission has a tendency to fizzle by declining
permission, a safe circumstance, since it will be immediately
recognized. Then again, a configuration or usage botch in a
system that expressly rejects get to has a tendency to fizzle
by permitting get to, a disappointment which may go
unnoticed in ordinary utilization. This guideline applies both
to the outward appearance of the assurance system and to its
hidden execution.

Yusufovna [10] has presented an application of data mining
approaches for IDS. Intrusion detection can termed as of
detecting actions that attempt to threat the privacy, reliability
and accessibility of the resources of a system. IDS model is
presented as well as its limitation in determining security
violations are presented in this paper.

Halfond and Orso [11] had presented a technology for
detection and prevention of SQLIA. This technique made
was based on the approach that intended to detect the
malicious queries before their execution inside the database.
To automatically build a model of the legal or correct

Paper ID: SUB14281 60

http://creativecommons.org/licenses/by/4.0/�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yusufovna,%20S.F..QT.&searchWithin=p_Author_Ids:37668156000&newsearch=true�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

queries, the static part of the technique used the program
analysis. This could be generated by the application itself.
The technique used the runtime monitoring for inspection of
dynamically generated queries and to check them against the
static build model.

Halfond and Orso [12] had proposed a technique for
countering SQL injection. The technique actually combined
the conservative static analysis and runtime monitoring for
detection and stoppage of illegal queries before they are
executed on the database. The technique builds a
conservative model of the legitimate queries that could be
generated by the application in its static parts. The technique
inspected the dynamically generated queries for compliance
with statically build model in its dynamic part.

W. G. J. Halfond et. al. [13], proposed another, much
automated methodology for ensuring existing Web
applications against SQL infusion. This methodology has
both calculated and commonsense favorable circumstances
over most existing systems. From the calculated viewpoint,
the methodology is focused around the original thought of
positive spoiling and the idea of syntax-aware evaluation.
From the reasonable outlook, the method is in the meantime
exact and productive and has negligible arrangement
necessities.

2.1 Types of SQLIA

2.1.1 Tautologies
Tautology-based attacks are among the simplest and best
known types of SQLIAs. The general goal of a tautology
based attack is to inject SQL tokens that cause the queries
conditional statement to always evaluate to true[2]. This
technique injects statements that are always true so that the
queries always return results upon evaluation of WHERE
condition [15].
Injected query: select name from user_details where
username = ‘abc’ and password = or1 = 1.

2.1.2 Union Queries
SQL allows two queries to be joined and returned as one
result set. For example, SELECT col1,col2,col3 FROM
table1 UNION SELECT col4,col5,col6 FROM table2 will
return one result set consisting of the results of both queries
Using this technique, an attacker can trick the application
into returning data from a table different from the one that
was intended by the developer. Injected query is
concatenated with the original SQL query using the keyword
UNION in order to get information related to other tables
from the application [2].

Original query: select acc-number from user_details where
u_id = 500
Injected query: select acc-number from user_details where
u_id = ‘500’ union select pin from acc_details where
u_id=’500’ [15]

2.1.3 Piggybacked
In this attack type, an attacker tries to inject additional
queries along with the original query, which are said to
”piggy-back” onto the original query. As a result, the
database receives multiple SQL queries for execution

additional query is added to the original query. This can be
done by using a query delimiter such as ”;”, which deletes
the table specified [15]. Injected Query: select name from
user_details where username = ‘abc’; droptable acc –

2.1.4 Timing attack
In this type of attack, the attacker guesses the information
character by character, depending on the output form of
true/false. In time based attacks, attacker introduces a delay
by injecting an additional SLEEP(n) call into the query and
then observing if the webpage was actually by n seconds
[15].

2.1.5 Blind SQL injection attacks
Attackers typically test for SQL injection vulnerabilities by
sending the input that would cause the server to generate an
invalid SQL query. If the server then returns an error
message to the client, the attacker will attempt to reverse-
engineer portions of the original SQL query using
information gained from these error messages [15].

2.2 Architecture for detection of SQL Injection Attack
(SQLIA)

Amutha Prabakar and KarthiKeyan [1] give an algorithm for
identifying and counteracting SQL Injection Attack utilizing
Aho–Corasick Pattern matching algorithm. The existing plan
has the accompanying two modules: 1) Static Stage, and 2)
Dynamic Stage. The Static Pattern list keeps up a list of
known Patterns of anomaly. In Static Stage, the client
produced SQL Queries are checked by applying Static
Pattern Matching Algorithm. In Dynamic Stage, if any type
of new irregularity is happen then Alert will show and new
Abnormality Pattern will be created. The new anomaly
pattern will be redesigned to the Static Pattern List. The
accompanying steps are performed amid Static and Dynamic
stage; the changes are made in the Dynamic phase.

Figure 1: Architecture of SQLIA Detection

2.2.1. Static Phase
In this, a static pattern list is maintained. And we keep
up a list of known anomaly patterns. The client
generated SQL queries are checked by applying the
Static Pattern Matching Algorithm.
Step 1. User’s Query is acquired and sent to the Static
Pattern Matching Algorithm.

Paper ID: SUB14281 61

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Step 2. Each Pattern is compared with the Anomaly Patterns,
stored in the list, during the pattern matching.
Step 3. If the pattern is exactly match with one of the stored
pattern in the Anomaly Pattern List then the SQL Query is
affected with SQL Injection Attack.

2.2.2. Dynamic Phase
In Dynamic Stage, if any type of new anomaly is
occurred, then the alert is shown, and new anomaly will
be created. This new anomaly pattern will be inserted in
the Static Pattern List.
Step 1. Anomaly Score value is calculated for the user
generated SQL Query,
Step 2. If the Anomaly Score value is more than the
Threshold value, then an Alarm is given and Query will be
passed to the Administrator.
Step 3. If the Administrator receives any Alarm then the
Query will be analyze by manually. If the query is affected
by any type of injection attack then a pattern will be
generated and the pattern will be added to the Static Pattern
list.

2.2.3. Anomaly Score value
In the static phase, each anomaly pattern from the static
pattern List is compared with the user’s query. The Anomaly
Score value is generated for each query pattern static pattern
list. If the query is match 100% with any of the pattern from
the static pattern list, then that query is affected with SQL
Injection Attack(SQLIA). Otherwise, the high matching
score is called as an Anomaly Score value of a query. If the
Anomaly Score value is more then the Threshold value
(assume that 50%), then the query will be transfer to the
Administrator.

3. Conclusion

In this paper, we presented a novel technique against
SQLIAs, we surveyed a plan for recognition and
counteractive action of SQL Injection Attack(SQLIA)
utilizing Aho–Corasick pattern matching calculation. The
surveyed plan is assessed by utilizing specimen of well
known attack patterns. The technique is fully automated and
detects SQLIAs using a model-based approach that
combines static and dynamic analysis. This application can
be used with various databases.

Reference

[1] M. A. Prabakar, M. KarthiKeyan, K. Marimuthu, “An

Efficient Technique for Preventing SQL Injection
Attack Using Pattern Matching Algorithm”, IEEE Int.
Conf. on Emerging Trends in Computing,
Communication and Nanotechnology, 2013.

[2] William G.J. Halfond and Panagiotis Manolios,
“WASP: Protecting Web Applications Using Positive
Tainting and Syntax-Aware Evaluation”, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING,
VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

[3] E. Bertino, A. Kamra, E. Terzi, and A. Vakali,
“Intrusion detection in RBAC-administered databases”,
in the Proceedings of the 21st Annual Computer
Security Applications Conference, 2005.

[4] E. Bertino, A. Kamra, and J. Early, “Profiling Database
Application to Detect SQL Injection Attacks”, In the
Proceedings of 2007 IEEE International Performance,
Computing, and Communications Conference, 2007.

[5] E. Fredkin, “TRIE Memory”, Communications of the
ACM, 1960.

[6] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti,
“Using Parse Tree Validation to Prevent SQL Injection
Attacks”, Computer Science and Engineering,The Ohio
State University Columbus, 2005.

[7] J. H. Saltzer, M. D. Schroeder, “The Protection of
Information in Computer Systems”, In Proceedings of
the IEEE, 2005.

[8] Kamra, E. Bertino, and G. Lebanon, “Mechanisms for
Database Intrusion Detection and Response”, in the
Proceedings of the 2nd SIGMOD PhD Workshop on
Innovative Database Research, 2008.

[9] S. Axelsson, “Intrusion detection systems: A survey and
taxonomy”, Technical Report, Chalmers University,
2000.

[10] S. F. Yusufovna, “Integrating Intrusion Detection
System and Data Mining”, IEEE Ubiquitous
Multimedia Computing, 2008.

[11] W. G. J. Halfond and A. Orso, “AMNESIA: Analysis
and Monitoring for NEutralizing SQL Injection
Attacks”, College of Computing, Georgia Institute of
Technology, 2005.

[12] W. G. J. Halfond and A. Orso, “Combining Static
Analysis and Runtime Monitoring to Counter SQL
Injection Attacks”, College of Computing, Georgia
Institute of Technology, 2005.

[13] W. G. J. Halfond, A. Orso, and P. Manolios, “Using
Positive Tainting and Syntax-Aware Evaluation to
Counter SQL Injection Attacks”, Proceedings of the
14th ACM SIGSOFT international symposium on
Foundations of software engineering, 2006.

[14] V. Aho and Margaret J. Corasick, “Efficient string
matching: An aid to bibliographic search”,
Communications of the ACM, 1975.

[15] Mahima Srivastava, “Algorithm to Prevent Back End
Database against SQL njection Attacks”, 2014
International Conference on Computing for Sustainable
Global Development (INDIACom).

Paper ID: SUB14281 62

http://creativecommons.org/licenses/by/4.0/�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yusufovna,%20S.F..QT.&searchWithin=p_Author_Ids:37668156000&newsearch=true�

