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Abstract: The ternary quadratic homogeneous equation representing cone given by 𝒙𝒙𝟐𝟐 + 𝟗𝟗𝒚𝒚𝟐𝟐 = 𝟓𝟓𝟓𝟓𝒛𝒛𝟐𝟐 is analyzed for its non- zero 
distinct integer points on it. Five different patterns of integer points satisfying the cone under consideration are obtained. A few 
interesting relation between the solutions and special number patterns are presented. 
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Notations:  
Pn

m = Pyramid number of rank n with size m 
Tm,n = Polygonal number of rank n with size m 
 
1. Introduction 
 
The ternary quadratic Diophantine equation offers an 
unlimited field for research due to their variety [1, 10]. For 
an extensive review of various problems one may refer [2, 
9]. This communication concerns with yet another 
interesting ternary quadratic equation representing x2 + 9y2 
=50z2 a cone for determining its infinitely many non- zero 
integral points. Also a few interesting relations among the 
solutions and special number are presented. 
 
2. Method of Analysis 
 
The ternary quadratic equation to be solved for its non-zero 
integer solutions is  

𝑥𝑥2 + 9𝑦𝑦2 = 50𝑧𝑧2                            (1) 
Assume z (a, b) = a2 + 9b2, Where a, b > 0        (2)  

 
We illustrate below five different patterns of non-zero 
distinct integer solutions to (1). 
 
2.1 Pattern: 1 
 

Write 50 as 50 = (7 + i) (7 - i)                    (3)  
Substituting (2) and (3) in (1), employing the method of 
factorization, define  
 
(x + 3iy) (x - 3iy) = (7 + i) (7 - i) (a + 3ib)2 (a - 3ib)2 
 
Equating real and imaginary parts, we get 

x = x (a, b) = 7a2 - 63b2 – 6ab                 (4)  
 

y = y (a, b) =1
3
 [a2 - 9b2 + 42ab]               (5) 

Thus (2), (4), (5) represents non-zero distinct integral 
solutions of (1) in two parameters As our interest is on 
finding integer solutions, we choose a and b suitably so that 
the value of x, y and z are in integers. In what follows the 
values of a, b and the corresponding integer solutions are 
exhibited.  
 
Case 1: Let a = 3A, b = 3B.  
The corresponding solutions of (1) are 

x = x (A, B) = 63A2 - 567B2 – 54AB  
y = y (A, B) = 3A2 - 27B2 + 126AB 
z = z (A, B) = 9A2 + 81B2  
 
Properties:  
1. x(A,1) + T128, A ≡ 1 (mod 8)  
2. 2y(A ,A+1) – x(A, A+1) = 2700 T3, A  
3. y(A,1) – T8, A ≡ -27 (mod128)  
4. 6{z(A, A(A+1)) – 204𝑇𝑇3,𝐴𝐴

2 } is a nasty number  
 
Case 2: Let a = 3A, b = B.  
The corresponding solutions of (1) are  
x = x (A, B) = 63A2 - 63B2 – 18AB  
y = y (A, B) = 3A2 - 3B2 + 42AB 
z = z (A, B) = 9A2 + 9B2  
 
Properties:  
1. x(A(A+1), A+2) – 21y(A(A+1), A+2) + 5400𝑃𝑃𝐴𝐴5 = 0 
2. x(A, A+1) + 9z(A, A+1) – 6T4, A + 18𝑃𝑃𝑃𝑃𝐴𝐴  a nasty number 
3. T128, A – x(A, 1) ≡ 19 (mod 44) 
4. x(A, A(A+1) - 12𝑃𝑃𝐴𝐴5 + 12𝑇𝑇3,𝐴𝐴

2  - 3 T4, A a nasty number.  
 
Case 3: Let a = 3A, b = 3A + 1.  
The corresponding solutions of (1) are  
 
x = x (A, A) = -558A2 - 396A – 63 
y = y (A, A) = 102A2 + 24A – 3 
z = z (A, A) = 90A2 + 54A + 9  
 
Properties:  
1. z(A(A+1),1)–108T3, A - 360𝑇𝑇3,𝐴𝐴

2 ≡ 0(mod 9)  
2. T206, A – y(A, 1)≡ 3 (mod 24)  
3. y(A,A) – z(A,A) – 12 T4, A ≡ 0 (mod 6)  
 
2.2 Pattern: 2  
 
Instead of (3), write 50 as  

50 = (1 + 7i) (1 - 7i)                              (6)  
 
Following the procedure presented in pattern: 1, the 
corresponding values of x and y are 

x = x (a, b) = a2 - 9b2 – 42ab                    (7)  
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y = y (a, b) = 1
3

[7a2 - 63b2 + 6ab]                    (8)  
 
Case 1: Let a = 3A, b = 3B.  
 
The corresponding solutions of (1) are 
 
x = x (A, B) = 9A2 - 81B2 – 378AB  
y = y (A, B) = 21A2 - 189B2 + 18AB  
z = z (A, B) = 9A2 + 81B2  
 
Properties:  
1. 7 x(A, A+1) – 3y(A, A+1)+ 5400 T3, A = 0  
2. x(A, A) +450 T4, A = 0 
3. y(A,A) + 150 T4, A = 0  
4. 6{x(A, A(A+1)) +736𝑃𝑃𝐴𝐴5 + 344𝑇𝑇3,𝐴𝐴

2 } is a nasty number  
5. y(2A, A) + T12, A≡ 0 (mod 4) 
6. y(A, A(A+1) ) + 12𝑃𝑃𝐴𝐴5 + 36𝑇𝑇3,𝐴𝐴

2  + 3 T4, A is a nasty number 
 
Case 2: Let a = 3A, b = B.  
 
The corresponding solutions of (1) are  
x = x (A, B) = 9A2 - 9B2 – 126AB  
y = y (A, B) = 21A2 - 21B2 + 6AB 
z = z (A, B) = 9A2 + 9B2  
 
Properties:  
1. x (A, A) +126 T4, A = 0 
2. y (A, A) – 6T4, A = 0 
3. x (A, A) + y (A, A) a Nasty number 
4. y (A, A) + z (A, A) a Nasty number 
5. y (2A, A) + T8, A≡ 0 (mod 2) 
6. y (A, A(A+1) - 12𝑇𝑇3,𝐴𝐴

2  + 3 T4, A a Nasty number.  
 
Case 3: Let a = 3A, b = 3A + 1.  
The corresponding solutions of (1) are  
x = x (A, A) = -450A2 - 180A – 9 
y = y (A, A) = -150A2 -120A – 21 
z = z (A, A) = 90A2 + 54A + 9  
 
Properties:  
1. z (A, A) +6T4, A - 9 a Nasty number  
2. 1

2
{x (A, A) – y (A, A)} a Nasty number 

3. y (A,A) + z (A,A) ≡ 0 (mod 6)  
 
2.3: Pattern: 3 
(1) is written in the form of ratio as  
 

 𝑥𝑥+𝑧𝑧
7𝑧𝑧+3𝑦𝑦

= 7𝑧𝑧−3𝑦𝑦
𝑥𝑥−𝑧𝑧

= 𝐴𝐴
𝐵𝐵

,𝐵𝐵 ≠ 0. 
which is equivalent to the system of equations, 
 

Bx -3Ay + (B-7A) z = 0                           (9)  
Ax + 3By – (A+7B) z = 0                        (10)  

Applying the method of cross multiplication the integer 
solutions (1) are given by  
 

x = x (A, B) = 3A2 – 3B2 + 42AB                 (11)  
y = y (A, B) = 7A2 - 7B2 - 2AB                 (12)  

z = z (A, B) = 3A2 +3B2 ,                                       (13)  
which represents non- zero distinct integral solutions of (1) 
in two parameters.  

 
Properties:  
 
1. x (A, A+1) – z(A, A+1) -72 T3, A ≡ 0 (mod 6)  
2. x (A(A+1), A+2) – z(A(A+1), A+2)-252𝑃𝑃𝐴𝐴3 a Nasty 
number 
3. 7x(A2,A+1)- 3y(A2,A+1) -600𝑃𝑃𝐴𝐴5  =0 
4. x (A, 1) -3T4, A ≡ -3 (mod 42) 
5. 3{x(A,A) + y(A,A)}a Nasty number 
6. 3{z(A,A) - y(A,A)}a Nasty number 
7. y(A, 1)- T16, A ≡ -3 (mod 4) 
 
2.4 Pattern: 4  
 

 (1) is written as 50z2 - 9y2 = x2 = x2*1                  (14)  
 Assume x (a, b) = 50a2 - 9b2                                         (15)  

Write (1) as  
 1 = (√50 + 7) (√50 - 7)                           (16)  

Substituting (15) and (16) in (14) and applying the method 
of factorization, define  
 
(√50 z + 3y) = (√50 + 7) (√50 a + 3b)2 

 Equating rational and irrational parts, we have  
 
y = y (a, b) = 1

3
[350a2 + 63b2 + 300ab]  

z = z (a, b) = 50a2 + 9b2 + 42ab  
 
Case 1: let a = 3A, b = 3B 
The corresponding solutions of (1) are  
x = x (A, B) = 450A2 – 81B2 

y = y (A, B) = 1050A2 + 189B2 + 900AB            (17)  
z = z (A, B) = 450A2 + 81B2 + 378AB                 (18)  

Properties:  
 
1. y (A, A (A+1) ) -756𝑇𝑇3,𝐴𝐴

2  - 1800𝑃𝑃𝐴𝐴5 - 1050𝑇𝑇4,𝐴𝐴  = 0 
2. x (A, A) - 369T4, A = 0  
3. y (A,1) – T2102, A ≡ 189 (mod 1949) 
4. z (A, 1) – T902, A ≡ 81 (mod 827) 
 
Case 2: Let a = 3A, b = B.  
The corresponding solutions of (1) are  
x = x (A, B) = 450A2 - 9B2  
y = y (A, B) = 1050A2 +21B2 +300AB  
z = z (A, B) = 450A2 + 9B2 + 126AB 
 
Properties:  
1. y (A, A(A+1) ) -84𝑇𝑇3,𝐴𝐴

2  - 600𝑃𝑃𝐴𝐴5 - 1050𝑇𝑇4,𝐴𝐴  = 0 
2. x (A, A) - 441T4, A = 0  
 3. y (A,1) – T2102, A ≡ 2 (mod 19) 
 4. z (A, 1) – T902, A ≡ 9 (mod 575) 
 5. x (A, 1) + z (A, 1) – T1002, A ≡ 0 (mod 625)  
 
Case 3: Let a = 3A, b = 3A + 1.  
The corresponding solutions of (1) are  
x = x (A, A) = 369A2 - 54A + 1 
y = y (A, A) = 2139A2 + 426A + 21 
z = z (A, A) = 709A2 + 180A + 9  
 
Properties:  
 1. x (A, A) - 369T4, A ≡ 1 (mod 54) 
 2. y (A,1) – T4280, A ≡ 1 (mod 4) 
 3. z (A, 1) – T1420, A ≡ 1 (mod 8) 
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 4. x (1, 1) – 136 Nasty Number 
 
2.5 Pattern: 5  

 
Assume x (a, b) = 50a2 - 9b2                                (19)  

Substituting (19) in (1) and applying the method of 
factorization, define  
 
(√50 a + 3b)2 = (√50 z + 3y)  
 
Equating rational and irrational we get.  

y = y (a, b) = 1
3
 [50a2 + 9b2]                  (20)  

z = z (a, b) = 6ab (21)  
 
As our interest is on finding integer solutions, we choose a 
and b suitably so that the values of x, y and z are in integer. 
In what follows the values of a, b and the corresponding 
integer solutions are exhibited.  
 
Case 1: Let a = 3A, b = 3B  
The corresponding solutions of (1) are  
x = x (A, B) = 450A2 – 81B2 
y = y (A, B) = 150A2 + 27B2 

z = z (A, B) = 54AB  
 
Properties :  
1. 3y (1, B) – x (1, B) – z (1, B) – T324, B ≡ 0 (mod 107)  
2. x (B, 1) + 3y (B, 1) +z(B, 1) – T1802, B ≡ 0 (mod 953)  
3. x (A,1) + z (A,1) – T902, A ≡ -81 (mod 503)  
4. y (A(A+1), A) -3 T4, A a Nasty number 
 
Case 2: Let a = 3A, b = 3B+1  
 
The corresponding solutions of (1) are  
 
x = x (A, B) = 450A2 – 81B2 - 54B - 9 
y = y (A, B) = 150A2 + 27B2 + 18B + 3 
z = z (A, B) = 162A + 486AB  
 
Properties :  
 1. 3y (A, B) - x(A, B) - T326, B ≡ 18 (mod 269)  
 2. y (1, B) – T56, B ≡ 21 (mod 44)  
 3. x (1, B) + T164, B ≡ 39 (mod 134)  
 
Case 3: Let a = 3A, b = B  
 
The corresponding solutions of (1) are  
x = x (A, B) = 450A2 – 9B2  
y = y (A, B) = 150A2 + 3B2  
z = z (A, B) = 18AB  
 
Properties:  
 1. x (A, 1) - T902, A ≡ -9 (mod 449)  
 2. z (A, A) – T38, A ≡ 0 (mod 17) 
 3. z (A, A( A+1) ) – 24 𝑃𝑃𝐴𝐴5 a Nasty number 
 
3. Remarkable Observation 
  
Employing the solutions (x, y, z) of (1) each of the following 
expression among the special polygonal and pyramidal 
numbers are observed. 

• �3𝑃𝑃𝑥𝑥−2
3
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�

2
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4. Conclusion 
 
In this work, the ternary quadratic Diophantine equations 
referring conies 𝑥𝑥2 + 9𝑦𝑦2 = 50𝑧𝑧2 is analyzed for is non-
zero distinct integral points. A few interesting properties 
between the solutions and special numbers are presented. To 
conclude, one may search for other patterns of solutions and 
their corresponding properties for the cone under 
consideration. 
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