Impact Factor (2012): 3.358

Lattice Points on the Cone $X^2 + 9Y^2 = 50Z^2$

P. Jayakumar¹, K. Sangeetha²

^{1,2}Department of Mathematics, A.V.V.M Sri Pushpam College (Autonomous), Poondi, Thanjavur (District) – 613 503, Tamilnadu India

Abstract: The ternary quadratic homogeneous equation representing cone given by $x^2 + 9y^2 = 50z^2$ is analyzed for its non-zero distinct integer points on it. Five different patterns of integer points satisfying the cone under consideration are obtained. A few interesting relation between the solutions and special number patterns are presented.

Keywords: Diophantine equation, Ternary quadratic, integral solutions, special numbers, a few interesting Relation

2010 Mathematics Subject Classification: 11D09

Notations:

 $P_n^m =$ Pyramid number of rank n with size m $T_{m,n} =$ Polygonal number of rank n with size m

1. Introduction

The ternary quadratic Diophantine equation offers an unlimited field for research due to their variety [1, 10]. For an extensive review of various problems one may refer [2, 9]. This communication concerns with yet another interesting ternary quadratic equation representing $x^2 + 9y^2 = 50z^2$ a cone for determining its infinitely many non-zero integral points. Also a few interesting relations among the solutions and special number are presented.

2. Method of Analysis

The ternary quadratic equation to be solved for its non-zero integer solutions is

$$x^{2} + 9y^{2} = 50z^{2}$$
 (1)
Assume z (a, b) = $a^{2} + 9b^{2}$, Where a, b > 0 (2)

We illustrate below five different patterns of non-zero distinct integer solutions to (1).

2.1 Pattern: 1

Write 50 as 50 = (7 + i) (7 - i) (3)

Substituting (2) and (3) in (1), employing the method of factorization, define

$$(x + 3iy) (x - 3iy) = (7 + i) (7 - i) (a + 3ib)^{2} (a - 3ib)^{2}$$

Equating real and imaginary parts, we get

$$x = x (a, b) = 7a^2 - 63b^2 - 6ab$$
 (4)

$$y = y(a, b) = \frac{1}{3} [a^2 - 9b^2 + 42ab]$$
 (5)

Thus (2), (4), (5) represents non-zero distinct integral solutions of (1) in two parameters As our interest is on finding integer solutions, we choose a and b suitably so that the value of x, y and z are in integers. In what follows the values of a, b and the corresponding integer solutions are exhibited.

Case 1: Let a = 3A, b = 3B. The corresponding solutions of (1) are $x = x (A, B) = 63A^{2} - 567B^{2} - 54AB$ $y = y (A, B) = 3A^{2} - 27B^{2} + 126AB$ $z = z (A, B) = 9A^{2} + 81B^{2}$

Properties:

1. $x(A,1) + T_{128, A} \equiv 1 \pmod{8}$

- 2. $2y(A,A+1) x(A,A+1) = 2700 T_{3,A}$
- 3. $y(A_1) T_{8, A} \equiv -27 \pmod{128}$
- 4. $6\{z(A, A(A+1)) 204T_{3,A}^2\}$ is a nasty number

Case 2: Let a = 3A, b = B.

The corresponding solutions of (1) are $x = x (A, B) = 63A^2 - 63B^2 - 18AB$ $y = y (A, B) = 3A^2 - 3B^2 + 42AB$ $z = z (A, B) = 9A^2 + 9B^2$

Properties:

- 1. $x(A(A+1), A+2) 21y(A(A+1), A+2) + 5400P_A^5 = 0$ 2. $x(A, A+1) + 9z(A, A+1) - 6T_{4, A} + 18Pr_A$ a nasty number 3. $T_{128, A} - x(A, 1) \equiv 19 \pmod{44}$
- 4. $x(A, A(A+1) 12P_A^5 + 12T_{3,A}^2 3T_{4,A}$ a nasty number.

Case 3: Let a = 3A, b = 3A + 1. The corresponding solutions of (1) are

 $x = x (A, A) = -558A^{2} - 396A - 63$ $y = y (A, A) = 102A^{2} + 24A - 3$ $z = z (A, A) = 90A^{2} + 54A + 9$

Properties:

1. $z(A(A+1),1)-108T_{3,A}-360T_{3,A}^2 \equiv 0 \pmod{9}$

2. $T_{206, A} - y(A, 1) \equiv 3 \pmod{24}$

3. $y(A,A) - z(A,A) - 12 T_{4,A} \equiv 0 \pmod{6}$

2.2 Pattern: 2

Instead of (3), write 50 as

$$50 = (1 + 7i) (1 - 7i)$$
 (6)

Following the procedure presented in pattern: 1, the corresponding values of x and y are

$$x = x (a, b) = a^{2} - 9b^{2} - 42ab$$
 (7)

Volume 3 Issue 12, December 2014

Paper ID: SUB14123

<u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

20

(8)

y = y (a, b) =
$$\frac{1}{3}$$
 [7a² - 63b² + 6ab]

Case 1: Let a = 3A, b = 3B.

The corresponding solutions of (1) are

 $x = x (A, B) = 9A^2 - 81B^2 - 378AB$ $y = y (A, B) = 21A^2 - 189B^2 + 18AB$ $z = z (A B) = 9A^2 + 81B^2$

Properties:

1. 7 $x(A, A+1) - 3y(A, A+1) + 5400 T_{3, A} = 0$ 2. $x(A, A) + 450 T_{4, A} = 0$ 3. $y(A,A) + 150 T_{4,A} = 0$ 4. $6\{x(A, A(A+1)) + 736P_A^5 + 344T_{3,A}^2\}$ is a nasty number 5. $y(2A, A) + T_{12, A} \equiv 0 \pmod{4}$ 6. y(A, A(A+1)) + $12P_A^5 + 36T_{3,A}^2 + 3T_{4,A}$ is a nasty number

Case 2: Let a = 3A, b = B.

The corresponding solutions of (1) are $x = x (A, B) = 9A^2 - 9B^2 - 126AB$ $y = y (A, B) = 21A^2 - 21B^2 + 6AB$ $z = z (A, B) = 9A^2 + 9B^2$

Properties:

1. $\bar{x}(A, A) + 126 T_{4, A} = 0$ 2. y (A, A) $- 6T_{4,A} = 0$ 3. x(A, A) + y(A, A) a Nasty number 4. y(A, A) + z(A, A) a Nasty number 5. y (2A, A) + $T_{8, A} \equiv 0 \pmod{2}$ 6. y (A, A(A+1) - $12T_{3,A}^2$ + 3 T_{4, A} a Nasty number.

Case 3: Let a = 3A, b = 3A + 1. The corresponding solutions of (1) are $x = x (A, A) = -450A^2 - 180A - 9$ $y = y (A, A) = -150A^2 - 120A - 21$ $z = z (A, A) = 90A^2 + 54A + 9$

Properties:

1. $z(A, A) + 6T_{4, A} - 9$ a Nasty number 2. $\frac{1}{2}$ {x (A, A) – y (A, A)} a Nasty number 3. $y(A,A) + z(A,A) \equiv 0 \pmod{6}$

2.3: Pattern: 3

is written in the form of ratio as (1)

 $\frac{x+z}{7z+3y} = \frac{7z-3y}{x-z} = \frac{A}{B}, B \neq 0.$ which is equivalent to the system of equations,

$$Bx - 3Ay + (B-7A) z = 0$$
(9)
Ax + 3By - (A+7B) z = 0(10)

Ax + 3By - (A+7B) z = 0Applying the method of cross multiplication the integer solutions (1) are given by

$$x = x (A, B) = 3A^2 - 3B^2 + 42AB$$
 (11)

$$y = y (A, B) = 7A^{2} - 7B^{2} - 2AB$$
 (12)

$$z = z (A, B) = 3A^2 + 3B^2$$
, (13)

which represents non-zero distinct integral solutions of (1)in two parameters.

Properties:

1. $x (A, A+1) - z(A, A+1) - 72 T_3, A \equiv 0 \pmod{6}$ 2. x (A(A+1), A+2) – z(A(A+1), A+2)-252 P_A^3 a Nasty number 3. $7x(A^2,A+1) - 3y(A^2,A+1) - 600P_A^5 = 0$ 4. $x(A, 1) - 3T_4, A \equiv -3 \pmod{42}$

5. $3{x(A,A) + y(A,A)}$ a Nasty number

6. $3{z(A,A) - y(A,A)}$ a Nasty number

7. y(A, 1)- $T_{16, A} \equiv -3 \pmod{4}$

2.4 Pattern: 4

(1) is written as
$$50z^2 - 9y^2 = x^2 = x^{2*1}$$
 (14)
Assume x (a, b) = $50a^2 - 9b^2$ (15)

Write (1) as

 $1 = (\sqrt{50} + 7) (\sqrt{50} - 7)$ Substituting (15) and (16) in (14) and applying the method of factorization, define

 $(\sqrt{50} z + 3y) = (\sqrt{50} + 7) (\sqrt{50} a + 3b)^2$ Equating rational and irrational parts, we have

 $y = y (a, b) = \frac{1}{3} [350a^2 + 63b^2 + 300ab]$ $z = z (a, b) = 50a^{2} + 9b^{2} + 42ab$

Case 1: let a = 3A, b = 3BThe corresponding solutions of (1) are $x = x (A, B) = 450A^2 - 81B^2$ $y = y (A, B) = 1050A^2 + 189B^2 + 900AB$ (17) $z = z (A, B) = 450A^2 + 81B^2 + 378AB$ (18)**Properties:**

1. y (A, A (A+1)) -756 $T_{3,A}^2$ - 1800 P_A^5 - 1050 $T_{4,A} = 0$ 2. x (A, A) - $369T_{4, A} = 0$ 3. y (A,1) – $T_{2102, A} \equiv 189 \pmod{1949}$ 4. $z(A, 1) - T_{902, A} \equiv 81 \pmod{827}$

Case 2: Let a = 3A, b = B. The corresponding solutions of (1) are $x = x (A, B) = 450A^2 - 9B^2$ $y = y (A, B) = 1050A^2 + 21B^2 + 300AB$ $z = z (A, B) = 450A^2 + 9B^2 + 126AB$

Properties:

1. y (A, A(A+1)) -84 $T_{3,A}^2$ - 600 P_A^5 - 1050 $T_{4,A} = 0$ 2. x (A, A) - $441T_{4,A} = 0$ 3. y (A,1) – $T_{2102, A} \equiv 2 \pmod{19}$ 4. $z(A, 1) - T_{902, A} \equiv 9 \pmod{575}$ 5. x (A, 1) + z (A, 1) – $T_{1002, A} \equiv 0 \pmod{625}$

Case 3: Let a = 3A, b = 3A + 1. The corresponding solutions of (1) are $x = x (A, A) = 369A^2 - 54A + 1$ $y = y (A, A) = 2139A^2 + 426A + 21$ $z = z (A, A) = 709A^2 + 180A + 9$

Properties:

1. x (A, A) - $369T_{4, A} \equiv 1 \pmod{54}$ 2. y (A,1) – $T_{4280, A} \equiv 1 \pmod{4}$ 3. $z(A, 1) - T_{1420, A} \equiv 1 \pmod{8}$

Volume 3 Issue 12, December 2014

www.ijsr.net Licensed Under Creative Commons Attribution CC BY

χ

4. x (1, 1) – 136 Nasty Number

2.5 Pattern: 5

Assume x (a, b) = $50a^2 - 9b^2$ (19) Substituting (19) in (1) and applying the method of factorization, define

$$(\sqrt{50} a + 3b)^2 = (\sqrt{50} z + 3y)$$

Equating rational and irrational we get.

y = y (a, b) =
$$\frac{1}{3} [50a^2 + 9b^2]$$
 (20)
z = z (a, b) = 6ab (21)

As our interest is on finding integer solutions, we choose a and b suitably so that the values of x, y and z are in integer. In what follows the values of a, b and the corresponding integer solutions are exhibited.

Case 1: Let a = 3A, b = 3BThe corresponding solutions of (1) are $x = x (A, B) = 450A^2 - 81B^2$ $y = y (A, B) = 150A^2 + 27B^2$ z = z (A, B) = 54AB

Properties :

1. $3y (1, B) - x (1, B) - z (1, B) - T_{324, B} \equiv 0 \pmod{107}$ 2. $x (B, 1) + 3y (B, 1) + z(B, 1) - T_{1802, B} \equiv 0 \pmod{953}$ 3. $x (A,1) + z (A,1) - T_{902, A} \equiv -81 \pmod{503}$ 4. $y (A(A+1), A) - 3 T_{4, A}$ a Nasty number

Case 2: Let a = 3A, b = 3B+1

The corresponding solutions of (1) are

 $x = x (A, B) = 450A^{2} - 81B^{2} - 54B - 9$ $y = y (A, B) = 150A^{2} + 27B^{2} + 18B + 3$ z = z (A, B) = 162A + 486AB

Properties :

 $\begin{array}{l} 1. \ 3y \ (A, B) - x(A, B) - T_{326, B} \equiv 18 \ (mod \ 269) \\ 2. \ y \ (1, B) - T_{56, B} \equiv 21 \ (mod \ 44) \\ 3. \ x \ (1, B) + T_{164, B} \equiv 39 \ (mod \ 134) \end{array}$

Case 3: Let a = 3A, b = B

The corresponding solutions of (1) are $x = x (A, B) = 450A^2 - 9B^2$ $y = y (A, B) = 150A^2 + 3B^2$ z = z (A, B) = 18AB

Properties:

1. x (A, 1) - T_{902, A} \equiv -9 (mod 449) 2. z (A, A) - T_{38, A} \equiv 0 (mod 17) 3. z (A, A(A+1)) - 24 P_A^5 a Nasty number

3. Remarkable Observation

Employing the solutions (x, y, z) of (1) each of the following expression among the special polygonal and pyramidal numbers are observed.

•
$$\left(\frac{3P_{x-2}^{3}}{T_{3,x-2}}\right)^{2}$$
 + 9 $\left(\frac{P_{y-1}^{5}}{T_{4,y-1}}\right)^{2}$ = 50 $\left(\frac{P_{2}^{5}}{T_{3,2}}\right)^{2}$
• $\left(\frac{P_{x}^{5}}{T_{3,x}}\right)^{2}$ + 9 $\left(\frac{3P_{y-2}^{3}}{T_{3,y-2}}\right)^{2}$ = 0(mod 50)
• $\left(\frac{P_{x-1}^{5}}{T_{3,x-1}}\right)^{2}$ + 9 $\left(\frac{P_{y}^{5}}{T_{3,y}}\right)^{2}$ = 50 $\left(\frac{P_{z}^{5}}{T_{3,z+1}}\right)$
• $\left(\frac{P_{x}^{3}}{T_{3,x+1}}\right)^{2}$ + 9 $\left(\frac{3P_{y-2}^{3}}{T_{3,y-2}}\right)^{2}$ = 50 $\left(\frac{P_{z-1}^{5}}{T_{4,z+1}}\right)$

4. Conclusion

In this work, the ternary quadratic Diophantine equations referring conies $x^2 + 9y^2 = 50z^2$ is analyzed for is nonzero distinct integral points. A few interesting properties between the solutions and special numbers are presented. To conclude, one may search for other patterns of solutions and their corresponding properties for the cone under consideration.

References

- [1] Dickson, L.E., History of Theory of numbers, val.2, Chelsea publishing company. New York, 1952.
- [2] Gopalan, M.A., Pondichelvi.V., Integral solution of ternary quadratic equation z(x + y) = 4xy, Actociencia Indica, vol, XXXIVM, No.3, 1353-1358,2008.
- [3] Gopalan M.A., Kalinga Rani, J Observation on the Diophantine equation, $y^2 = Dx^2 + z^2$ Impact J.scitch: vol (2), 91-95, 2008.
- [4] Gopalan M.A. Pondichelvi.V., on ternary quadratic equation $x^2 + y^2 = z^2 + 1$,Impact J. sci.Tec. vol 2(2),55-58,2008.
- [5] Gopalan M.A., Manju Somanath Vanitha, N., Integral Solutions of ternary quadratic Diophantine equation $x^2 + y^2 = (k^2 + 1)z^2$. Impact J, sci.Tec;. vol.2(4), 175-178, 2008
- [6] Gopalan M.A., and Srividhya, G., Observation on $y^2 = 2x^2 + z^2$ Archimedes J..Math, 2(1), 7-15, 2012.
- [7] Gopalan M.A., Sangeetha, G., Observation on $y^2 = 3x^2 2z^2$ Antarctica J. Math. 9(4), 359-362, 2012
- [8] Gopalan M.A., Vidhyalakshmi, S., and Kavitha, A., Integral points on the homogeneous cone $z^2 = 2x^2 - 7y^2$, Dipohantus J. Math, 1(2), 127-136, 2012
- [9] Manjusomanath , Sangeetha, G., Gopalan , M.A., Observation on the ternary quadratic equation $y^2 = 3x^2 + z^2$, Bessed J. Math, 2(2), 101-105,2012
- [10] Mordell, L.J., Diophantine equations, Academic press, New York, 1969.

Author Profile

P. Jayakumar received the B. Sc , M.Sc degrees in Mathematics from University of Madras in 1980 and 1983 and the M. Phil., Ph. D degrees in Mathematics from Bharathidasan University, Thiruchirappalli in 1988 and 2010.He is now working as Associate Professor of Mathematics, A.V.V.M Sri Pushpam College Poondi, (Autonomous), Thanjavur (District) – 613 503, Tamil Nadu, India

Volume 3 Issue 12, December 2014 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY