Effect of Age on Brainstem Auditory Evoked Potential

Dr.Khushbu C. Patel¹, Dr. Chinmay J. Shah², Dr. Hemant B. Mehta³

¹Tutor, Department of Physiology, Government Medical College Bhavnagar, India
²Associate Professor, Department of Physiology, Government Medical College Bhavnagar, India
³Head of Department, Department of Physiology, Government Medical College Bhavnagar, India

Abstract: Background and Objective: Brainstem auditory evoked potentials (BAEP) constitute an objective hearing test. These are the potentials recorded from the ear and the scalp in response to a brief auditory stimulation. Several factors may affect the latencies, interpeak latencies in brainstem auditory evoked potential. So following study was conducted to investigate possible age effects on BAEP.

Method: Brainstem auditory evoked potentials recorded in 100 normal healthy subjects of different age groups. (15-24 years and ≥45 years). Each age group consists of 25 males and 25 females. BAEP were recorded by using RMS EMG EP MARC II (PC based) machine. The data was statistically analysed. Results: Absolute latencies of the waves I, II, III and IV significantly increases with age. These were no difference found for interpeak latencies with increasing age.

Conclusion: Keywords: Brainstem auditory evoked potential, Hearing test, Latency, Interpeak latency, Age.

 significant changes in the BAEPs in our study support the possible role of age as contributive factors for normal variations. So, in clinical practice, different norms be established for different age groups and gender.

1. Introduction

Evoked potential refers to surface electrical activity recorded from the surface of the scalp in response to a specific and adequate stimulus – Auditory, visual and somatosensory.³ The source of evoked potential is probably the summation of the action potentials generated by the afferent tracts and the electrical fields or activities of the synaptic discharges or post-synaptic potentials on those tracts⁶

Auditory evoked potentials (AEPs) are very small electrical voltage potentials which originate from the brain and are recorded from the scalp in response to an auditory stimulus.³⁴ So, Auditory evoked potentials span activity from the full length of the auditory pathway, from cochlear hair cells to cerebral cortex. AEP can be classified according to latency (i.e time interval between presentation of sound stimulus and wave peak) ⁵ ⁶ ⁷

Brainstem auditory evoked potentials (BAEPs) are the electrical activities resulting from the activation of the eighth nerve, cochlear nucleus, tracts and nuclei of the lateral lemniscus and inferior colliculus.⁸⁻¹¹ BAEP are far field reflections of the electrical activity which occurs in the auditory nerve and brainstem in response to an acoustic stimulus and which can be extracted from the electroencephalograph by filtering and averaging.¹²⁻¹³ The evoked potentials (EP) reflect the successive electrical events of the brainstem auditory pathways and are also named "far-field" potentials because they are recorded on the scalp, far from the origin. They occur within 10millisecond (msec) after each stimulus, they are called "Short-latency response."¹⁴ These potential are called brainstem auditory evoked potential or response because they are generated by the activation of the brainstem pathways.¹

The BAEP consists of a series of five positive waves occurring within 10 msec following stimulus onset. They are labelled with Roman numerals: wave I to V. These waves represent the neuroelectrical activity which is generated by the neural generators in the auditory pathway between cochlea and the brainstem.

Figure 1: waves of BAEP²¹⁶
The primary clinical application of the BAEP is the objective determination of hearing threshold in individuals who cannot participate in behavioral testing, such as infants and handicapped individuals. These are also used in monitoring traumatic brain injury patients and intraoperative monitoring. It helps to confirmation a localization of brainstem dysfunction. In addition, the BAEPs have ability to test peripheral auditory function directly has made it a valuable tool in infant hearing screening.

Various factors affect on BAEP such as recording variables (electrodes, filters), stimulus variables (stimulus intensity, stimulus rate, stimulus mode, stimulus phase) and subject variables (age, sex, temperature, hearing status) as it is mentioned in earlier studies, progression in age directly affect the peak latency and interpeak latency of BAEP. Hence the present study was undertaken to analyze the effect of age on BAEP waves.

2. Material and Method

Present study was conducted at Electrophysiology Lab, Department of Physiology, Government Medical college, Bhavnagar after obtaining permission from Institutional Review board(IRB) of Government Medical college, Bhavnagar. In our study, 100 normal healthy subjects were assigned to the following age groups.

Group 1 : 15-24 yrs (M=25, F=25)
Group 2 : ≥45 yrs (M=25, F=25)

Subject was asked to sit comfortably, to be relaxed and reassured that the procedure is totally harmless. Written informed consent obtained from the subjects (>18 years) or from the legal guardians of the subjects (<18 years). A detailed history was taken to rule out any hearing impairment. Their height and weight were also taken. The recording was done in the sitting position with appropriate head positioning so as to minimize postural muscle activity in the head and neck. BAEP was recorded by using PC-based machine RMS EMG EP MARK II. Electrodes are placed as per 10-20 International system of EEG electrode placement. Reference electrode was placed at Fz position on the forehead above Nasion. The Ground electrode was placed on mastoid of each ear. The electrode impedance was kept at 5 k ohm. A band pass of 100-3000Hz was used to filter out undesirable frequencies. BAEP was produced by a brief click that stimulates headphones at 11.1 per second at intensity of sound 60 dB. Computerized averaging was done. A series of five waves were recorded during the first 10 ms, following the sound stimulus. The absolutes latencies of the waves I to V and the interpeak latencies between the wave’s I-III, I-V and III-V were recorded for each ear separately.

3. Result

The data was analysed statistically by using the Student’s unpaired t test. Trial version of GraphPad InStat – [DATASET1.ISD] used for data analysis. p value of less than 0.05 considered statistically significant. The mean and standard deviation of the latency and interpeak latency in milliseconds are shown in Table 1 and 2.

Table 1: Comparison of latencies and interpeak latencies between Young & Older Males (mean ±SD)

<table>
<thead>
<tr>
<th>BAEP Waves</th>
<th>Young males</th>
<th>Older males</th>
<th>p value</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.70±0.17</td>
<td>1.81±0.13</td>
<td>0.0124</td>
<td>S</td>
</tr>
<tr>
<td>II</td>
<td>2.65±0.15</td>
<td>2.75±0.16</td>
<td>0.0182</td>
<td>S</td>
</tr>
<tr>
<td>III</td>
<td>3.70±0.18</td>
<td>3.86±0.13</td>
<td>0.0006</td>
<td>ES</td>
</tr>
<tr>
<td>IV</td>
<td>4.83±0.14</td>
<td>4.94±0.25</td>
<td>0.0536</td>
<td>NS</td>
</tr>
<tr>
<td>V</td>
<td>5.65±0.19</td>
<td>5.77±0.25</td>
<td>0.0591</td>
<td>NS</td>
</tr>
<tr>
<td>I-III</td>
<td>2.00±0.23</td>
<td>2.05±0.17</td>
<td>0.4177</td>
<td>NS</td>
</tr>
<tr>
<td>III-V</td>
<td>3.95±0.26</td>
<td>3.96±0.27</td>
<td>0.9149</td>
<td>NS</td>
</tr>
<tr>
<td>I-V</td>
<td>1.95±0.20</td>
<td>1.91±0.27</td>
<td>0.5639</td>
<td>NS</td>
</tr>
</tbody>
</table>

S: Significant, ES: Extremely Significant

Table 1 shows statistically significant difference in latency of wave I, II and III, when young males compared with older males. No significant differences were found in absolute latencies of wave IV, V and the interpeak latencies of waves I-III, I-V, III-V.

Table 2: Comparison of latencies and interpeak latencies between Young & Older Females

<table>
<thead>
<tr>
<th>BAEP Waves</th>
<th>Young Females</th>
<th>Older Females</th>
<th>p value</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.62±0.15</td>
<td>1.77±0.18</td>
<td>0.0021</td>
<td>VS</td>
</tr>
<tr>
<td>II</td>
<td>2.53±0.28</td>
<td>2.80±0.15</td>
<td>0.0001</td>
<td>ES</td>
</tr>
<tr>
<td>III</td>
<td>3.55±0.15</td>
<td>3.71±0.31</td>
<td>0.0290</td>
<td>S</td>
</tr>
<tr>
<td>IV</td>
<td>4.72±0.18</td>
<td>4.84±0.20</td>
<td>0.0380</td>
<td>S</td>
</tr>
<tr>
<td>V</td>
<td>5.53±0.25</td>
<td>5.65±0.44</td>
<td>0.2340</td>
<td>NS</td>
</tr>
<tr>
<td>I-III</td>
<td>1.94±0.18</td>
<td>1.93±0.16</td>
<td>0.8775</td>
<td>NS</td>
</tr>
<tr>
<td>III-V</td>
<td>3.91±0.28</td>
<td>3.94±0.35</td>
<td>0.7850</td>
<td>NS</td>
</tr>
<tr>
<td>I-V</td>
<td>1.98±0.29</td>
<td>2.08±0.27</td>
<td>0.2053</td>
<td>NS</td>
</tr>
</tbody>
</table>

S: Significant, ES: Extremely Significant, VS: very significant

Table 2 shows the absolute latencies of waves I,II,III and IV were significantly increased in older females than in younger females. No significant differences were observed in latencies of waves V and interpeak latencies of I-III,I-V,III-V IPI.

4. Discussion

This study tested the influence of age on BAEP latencies in younger and older age groups. In present study, Table 1 shows that there were significant longer latencies for waves I, II and III in older males as compared to younger males. In Table 2 shows that there were significant differences found for waves I,II,III and IV in females. There were no
significant difference found for interpeak latencies in male and female with advancing age.

(a) Wave I:
Wave I latency which is a measure of electrophysiological activity of the eight nerve. In our study, wave I latency was significant longer in older age groups. Rowe20, Stephen W H17, Rosehall U et al22, Costa P et al23, Fallah TM24 and Oku and Hasegawa25 also found latencies of wave I were progressively delay in the older participants due to peripheral processes. These studies support our findings.

(b) Wave II:
Wave II latency which is a measure of electrophysiological activity of cochlear nucleus. Table 1 and 2 shows that wave II latency was longer in older age groups. Julie V. Patterson et al25 also found age effects for waves II in older persons compared to younger which is similar to our study. Harinder JS et al4 and Maria Khatoon et al26 found no significant difference for wave II in older adult compared to young adult.

(C) Wave III:
Wave III latency which is a measure of electrophysiological activity of superior olivary nuclei. Table 1 and 2 shows that wave III latency was longer in older age groups. Harinder JS et al4, Fallah TM17, Maria Khatoon et al26 Rosehall U et al22, Oku and Hasegawa24, Trune DR et al27, H S Johannsen28 and Martini et al29 also reported that older adults had increased latency for wave III. These studies support our findings.

(d) Wave IV:
Harinder J S et al4 also reported that no significant differences were found for wave IV between younger males and older males while the latency of wave IV showed an increasing trend with age in female which support our study. H S Johannsen28 observed significant long latency in older subjects for wave IV.

(e) Wave V:
Beagley and Sheldrake30, Mogens Kjaer31, T J Manjurun et al32, Costa P et al33, Lille F et al34 also reported that no significant difference in latencies for wave V between subgroups of older and younger subjects which support our study. Maria Khatoon et al34, Jarger & Hall35, Nai-shin Chu36 showed small progressive prolongation in the peak latency with increasing age particularly peak V.

(f) I-III IPL:
I-III IPL is measure conduction from VIII nerve across subarachnoid space. Table 1 and 2 shows that no difference found between younger and older age groups. Nai-shin Chu36, Oku and Hasegawa34 and Costa et al33 also noted that the interpeak latency values do not increase with increasing age, in particular I-III IPL decrease. Maria Khatoon et al34, Fallah TM17, Harinder JS et al4 and Rowe20 found prolongation of I-III IPL as the age is increasing from younger to older.

(g)III-V IPL:
III-V IPL is measure conduction from lower pons to midbrain. Table 1 and 2 shows no significant difference found with increasing age.

Costa et al23 and Harinder JS4 found no significant change in III-V IPL between younger and older subjects. Maria Khatoon et al34, Fallah TM17, Nai-Shin chu36 and Uziel A et al37 found prolongation of III-V IPL as the age is increasing from younger to older.

(h) I-V IPL:
I-V IPL is a measure of conduction from proximal VIII nerve through pons to midbrain. Table 1 and 2 shows no difference seen with increasing age. Stepehn WH21, Roshenhall U et al22 and Costa P et al33 also noted that IPL I-V do not show a significant change which support our study.

Harinder JS et al4 showed I-V IPL increased in older males as compared to the young males while no significant difference was observed in the I-V IPL when young females were compared with older females. The increased latencies which were observed in elderly individuals could be due to degenerative changes like auditory nerve atrophy, synaptic delay and peripheral hearing loss with age. Increasing age also causes neuronal loss and changes in the permeability of the neural membrane, which might have led to the increased latencies of the BAEPs.

The latency prolongation of the BAEP components showed that the cognitive processing was affected with aging. Cognitive alterations which were observed with aging have been related to the dopaminergic and the cholinergic systems which play an important role in the process of cognition, because the number of mascaric Ach receptors in the central nervous system and the activity of choline acetyltransferase in the nerve terminals were shown to decrease with aging. On the other hand, nigrostriatal axons, nigrostriatal dopaminergic neurons and strial endogenous dopaminergic concentration in the human brain and in the D2 dopamine receptor binding sites were found to decrease with age. So, the cognitive decline is found to have been caused by the deterioration of the dopaminergic and the cholinergic systems. Thus, cognitive decline occurs as age advances, which may be the reason for the changes in the BAEPs as age advances.

Age related neuronal and structural changes within the human brainstem predict brainstem auditory evoked response differences. Findings regarding cell loss are contradictory but degenerative changes such as cell size and cell shape irregularities and accumulation of lipofusion pigments in the ventral cochlear nucleus, superior olivary nucleus, inferior colliculus, medial geniculate body and inferior olive. Degenerative changes in the myeline sheaths and axis cylinders of the structures. Prolonged latency due to age may be progressive neural atrophy within peripheral and central auditory system with advanced age.
5. Conclusion

Latencies and Interpeak latencies of BAEP have important diagnostic values. The results of this study shows that subject variable i.e Age have statistically significant influence on BAEP latencies. Therefore age can affect BAEP interpretation. Clinicians should consider them in clinical settings. It is recommended that in clinical practice, different norms be established for different age groups and genders.

References


Martini A, COmacchio F & Magnavita M. Auditory evoked responses (ABR, MLR, SVR) and brain mapping in elderly. Acta otolaryngologica 1990;476: 97-103


Author Profile

Dr. Khushbu C. Patel studied M.B.B.S & M.D. Physiology from Govt. Medical College, Bhavnagar. Currently working as Tutor in Department of Physiology in Govt. Medical College, Bhavnagar.