Document Clustering Approach for Forensic Analysis: A Survey

Prachi K. Khairkar¹, D. A. Phalke²

¹, ²Savitribai Phule Pune University, D Y Patil College of Engineering, Akurdi, Pune, India (411044)

Abstract: Digital world is consist of a huge volume of data. In forensic analysis, large amount of data is examined. So it’s a difficult task for computer examiner to do such analysis in quick period of time. That’s why to do the forensic analysis of documents within short period of time requires special approach such as Document Clustering. This paper reviews different existing Document clustering methods for example, K-means, K medoids, Single Link, Complete Link and Average Link in accordance with computer forensic analysis. In this paper we also give comparative study of different computer forensic analysis techniques and we propose enhance clustering algorithm which will improve accuracy of clustering to finding relevant documents from huge amount of data and speeds up computer examination process.

Keywords: Document clustering, Forensic analysis, Text clustering, Clustering algorithms, Outlier Detection.

1. Introduction

In Computer Forensic analysis thousands of files are usually examined that allowing the evidence on suspected computer by analyzing the communication logs and the data on the computer storage device. Everyone faces the problem of handling large amount of data. Daily, thousands of files can be investigated per computer. The process of analyzing large volumes of data may consume a lot of time.

1.1 Forensic analysis

In general, Digital forensics is the application of investigation and analysis technique to collect and defend evidence from a particular computing device in a way that is proper for presentation in a court of act. Forensic analysis deals with the reorganization, collection, preservation, examination, analysis, extraction as well as documentation of digital evidences. Computer Forensics, which can be broadly defined as the discipline that combines elements of law and computer science to collect and analyze data from computer systems in a way that is admissible as evidence in a court of law. Data in those files consists of unstructured text or data whose data analysis by forensic examiner, which is difficult to be performed and requires lots of time to get clue for further investigation. The clustering algorithm is the data having more similar characteristic of information within a cluster [1].

The method of analyzing the various crimes using the computer based methods is called as digital forensic analysis (DFA). Digital forensics is a part of forensic science encompassing and has become an important tool in the identification of computer-based and computer-assisted crime. So the key factor to improve such forensic analysis process requires text clustering and document clustering techniques. The text clustering and document clustering simplifies the job of forensic examiner in forensic investigation.

1.2 Text clustering

Generally, most of computer seized devices consist of textual data which is to be processed by examiners, but this textual information resides in unstructured format which makes difficult job. Text mining provides an effective, automatic platform to support the analysis of digital textual evidences, which is the key point for forensic analysis process [3]. Text clustering involves following steps:

1. Collection of documents
2. Pre-processing
 a) Tokenization
 b) Stop Words Removal
 c) Stemming
3. Text Clustering:

Based on preprocessing of data, text clustering is performed on preprocessed data. Text clustering produces sets of clusters as an output.

Forensic Analysis Process:

In forensic analysis process, the results of text clustering are used for collection of relevant files and documents according to reported case.

1.3 Document clustering

Computer forensic analysis involves the examination of the large volume of files. Among all of that files those file which are relevant to the forensic examiner interest need to be find quickly. Document clustering is the process of grouping similar documents into cluster which benefit is to retrieve the information effectively, reduce the search time and space, to remove outliers, to handle the high dimensionality of data and to provide the summary for similar documents. These document clustering provides different set of clusters among which forensic examiner analyze only relevant documents related to investigation of reported case. It helps to improve speed of the forensic analysis process. It will also help for forensic examiner to analyze the files and documents by only
analyzing representative of the clusters. The main purpose of using algorithms for clustering documents is to facilitate the discovery of new and useful knowledge from the documents under analysis.

Document clustering is considered as a centralized process has been in use in a number of different areas of text mining and information retrieval. Clustering is considered to be the most important unsupervised learning problem which deals with finding a structure in a collection of unlabeled data. A cluster is defined as a collection of objects which are “similar” between them and are “dissimilar” to the objects belonging to other clusters. The goal of clustering is to determine the intrinsic grouping in a set of unlabeled data. The main requirements that a clustering algorithm should satisfy are:

- Scalability,
- Handling many types of attributes,
- Identifying clusters with absolute shape,
- Determining input parameters,
- Capability to deal with noise and outliers,
- Unfitness to order of input records,
- High dimensionality,
- Interpretability and usability.

2. Literature Survey

The paper [1] has presented an approach that applies document clustering methods to forensic analysis of computers seized in police investigations. Reddy, BG Obula [2] in their paper gives comparative statement about different clustering algorithms by taking constraints i.e Data type, Cluster Shape, Complexity, Data Set, Measure, Advantages and Disadvantages. The paper [4] has introduced the different aspects of text mining and document clustering which are used for the analysis of forensic. In paper [5] author has used the clustering technique based on labeled clustering , for finding the correct disease of the patient and this clustering is done as soon as the update is made in the database it will provide us the current status of the patient and the treatment they are supposed to undergo. Zhao, Ying and Karypis, George in [6] this paper focuses to evaluate different hierarchical clustering algorithms and author has compared various partitional and agglomerative approaches. Karypis Steinbach, and Michael in their paper [7] presented the results of an experimental study of some common document clustering techniques: agglomerative hierarchical clustering and K-means. From survey on computer forensic analysis it can be concluded that clustering on data is not an easy step as there is huge data available. Hence, paper [10] presented an approach that applies document clustering methods to forensic analysis of computers seized in police work. Multithreading technique is used for document clustering for forensic data which will be useful for police investigations. In [13] this paper an effective digital text analysis strategy, believing on clustering based text mining techniques, is used for investigational purposes. The paper [14] is the survey of various clustering techniques. These techniques can be divided into several categories: Partitional algorithms, Density based, Hierarchical algorithms, and comparison of various clustering algorithms is surveyed and shows how Hierarchical Clustering can be better than other techniques.

3. Clustering Algorithms and Pre-processing

3.1 Collection of data

Document Clustering aims to automatically group related documents into clusters and also one of the tasks in machine learning and artificial intelligence and has received much attention in recent years. Clustering is one of the techniques of data mining extracting knowledge from large amount of information. Collection of data involves the processes like obtain the files and documents from the computer seized devices. The collection of such files and documents involves special techniques.

3.2 Pre-Processing Steps

It is done to represent the data in a form that can be used for clustering. There are many types of representing the documents like, graphical model, vector-Model, etc. Many measures are also used for weighing the documents and their similarities.

3.2.1 Stemming

Stemming is the process of reducing words into their base form and stem. For example, the words "connected", "connection", "connections" are all reduced to the stem "connect."

3.2.2 Stopword Removal

A term, which is not thought to convey any meaning as a dimension in the vector space (i.e. not context) is known as stopword. A typical method to remove stopwords is by compare each term with a compilation of known stopwords. This can be done by removing terms with low document frequencies and applying a part of speech tagger and then rejected all stop words such as nouns, verbs, pronouns, adjectives etc.

3.2.3 Term Frequency

Reduction technique known as Term Variance (TV) is also used to increase efficiency of clustering algorithms. As clusters are formed, which containing documents, term variance are used to estimate top n words which have greatest occurrences over documents within clusters.

3.2.4 Similarity Computation

Also it is important to find out distances between two documents when they are resides in different clusters and for finding out distances between them, cosine-based distance and Levenshtein -based distance [11].

Volume 3 Issue 12, December 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: SUB14799

1788
objects of cluster C will be called C(i). After computing d
consider cluster C. The average dissimilarity of i to all
validity index). Such a set of partitions may result directly
starting from different numbers and initial positions of the
(i,C) for all clusters C
for a given object, s(i) is as below:
s(i) = \min_{i \in C} d(i,C) - a(i)
where a(i) is the average dissimilarity of i to all other objects of A. Let us
calculate the dissimilarity of i to its neighbour cluster, and the silhouette
for a given object, s(i) is as below:
s(i) = \frac{d(i,C) - a(i)}{\max\{a(i), b(i)\}}
It can be verified that -1 ≤ s(i) ≤ 1. [1]

3.4 Clustering Algorithms

There are various algorithms which can be used in clustering
like K-means, K-medoids, Single Link, Complete Link and
Average Link. One of the simplest unsupervised algorithms is the
K-means. In single link clustering, two groups have been
merged such that their closest pair of documents have the
highest similarity compared to any other pair of groups. In
complete linkage many elements in the clusters are distant to
each other. It produces more Compact clusters and most
useful hierarchies than any other clustering. In average
linkage clustering pairing of clusters takes place with the
highest cohesion. The main key point of K-medoids is to
determine optimal value from the original set of values.

3.4.1 Partitioning Algorithms

Partitioning methods are divided into two methods, as
centroid and medoids algorithms. In centroid algorithms,
each cluster is represented by using the gravity centre of the
instances. The medoid algorithms establish each cluster by
means of the instances closest to gravity centre.

K-means:
K-Means is one of the simplest unsupervised learning
methods among all partitioning based clustering methods. If k
is the number of desired clusters then it classifies a given set
of n data objects in k clusters. A centroid is defined for each
cluster. Data objects having centroid nearest (or most similar)
to that data object are placed in a cluster. After processing all
data objects, calculating centroids, are recalculated, and the
entire process is repeated until no change. Based on the
newly calculated centroids, all data objects are considered to
the clusters. In each iterations centroids change their location
as centroids move in each iteration. This process is continued
until no change in the position of centroid. This results in k
cluster representing a set of n data objects. An algorithm for
k-means method is given below.

Algorithm :
Input : ‘k’, the number of clusters to be partitioned, ‘n’, the
number of objects.
Output: A set of ‘k’ clusters based on given similarity
function.
Steps: i) Arbitrarily choose ‘k’ objects as the initial cluster
centers;
ii) Repeat,
a. (Re)assign each object to the cluster to which the object is
nearest medoid;
b. Update the centroid (cluster means), by calculating the
mean value of the objects for each cluster;
iii) Until no change. [8]

K-medoid:
The k-means method uses centroid to represent the cluster
and it is sensitive to outliers. That is, a data object with an
extremely large value may disrupt the distribution of data.
This problem can be overcome by using medoids to represent
the cluster rather than centroid. A medoid is the center data
object in a cluster.

Here, k data objects are selected randomly as medoids to
represent k cluster and remaining all data objects are placed
in a cluster having medoid nearest (or most similar) to that
data object. New medoid is determined after processing all
data objects, which gives cluster in a better way and the
entire process is repeated. Again all data objects are clustered
to the clusters based on the new medoids. In each iteration,
medoids are changing their location step by step. This
process is continued until no there is no move. As a result, k
clusters are found representing a set of n data objects.

Algorithm :
Input : ‘k’, the number of clusters to be partitioned, ‘n’, the
number of objects.
Output: A set of ‘k’ clusters that minimizes the sum of the
dissimilarities of all the objects to their nearest medoid.
Steps:
i) Arbitrarily choose ‘k’ objects as the initial medoids;
ii) Repeat,
a. Assign each remaining object to the cluster with the
nearest medoid;
b. Randomly select a non-medoid object;
c. Compute the total cost of swapping old medoid object with newly selected nonmedoid object.
d. If the total cost of swapping is below zero, then perform that swap operation to form the new set of k-medoids.
iii) Until no change.

3.4.2 Expectation Maximization
The EM algorithm is well established clustering algorithms, in statistic community. The EM is model-based clustering algorithm that assumes the data were generated by a model. EM is chosen to cluster for the following reasons: among others:

- It has a strong statistical basis.
- It is linear in database size.
- It is robust to noisy data.
- It is able to accept any number of clusters as input.
- It can handle high dimensionality.
- It merges fast if a good initialization is given.

3.4.3 Fuzzy C-Means (FCM) algorithm
Traditional clustering approaches generate partitions; each pattern belongs to one cluster. The clusters in a hard clustering are disjoint. Fuzzy clustering extends this presentation to associate each pattern with every cluster using a membership function. Larger membership values specify higher confidence in the assignment of the pattern to the cluster. Widely used one algorithm is the Fuzzy C-Means (FCM) algorithm, which is based on k-means. The Fuzzy C-Means Clustering (FCM) is an unsupervised goal oriented clustering algorithm which attempts to find the most characteristic point in each cluster, this can be considered as the center of the cluster, then using membership functions for each instance in the clusters. It is efficient, straightforward, and can be implemented easily, but it is sensitive to initialization (due to random selection of initial center points) and so is easily trapped in local optima [4].

3.4.4 Hierarchical Clustering
Hierarchical clustering approaches attempt to create a hierarchical decomposition of the given document collection thus achieving a hierarchical structure. Hierarchical methods are usually classified into Agglomerative and Divisive methods depending on how the hierarchy is constructed. Agglomerative methods start with an initial clustering of the term space, where all documents are considered representing a separate cluster. The closest clusters using a given inter-cluster similarity measure are then merged continuously until only 1 cluster or a predefined number of clusters remain [6].

Steps in simple Agglomerative Clustering Algorithm:
1. Compute the similarity between all pairs of clusters i.e. calculate the similarity between the ith and jth clusters, which is represented by ijth entry of a similarity matrix.
2. Merge the most similar (closest) two clusters.
3. Update the similarity matrix to reflect the pairwise similarity between the new cluster and the original clusters.
4. Repeat steps 2 and 3 until only a single cluster remains.

Divisive clustering algorithms start with a single cluster containing all documents. It then continuously divides clusters until all documents are contained in their own cluster or a predefined number of clusters are found [6]. Agglomerative algorithms are usually classified according to the inter-cluster similarity measure between them. The most popular of these are single-link, complete-link and group average. Single link method where the distance between clusters is the minimum distance between any pair of elements drawn from these clusters, in the complete link it is the maximum distance and in the average link it is correspondingly an average distance. The clusters produced by the single link algorithm are formed at low dissimilarities in the dissimilarity dendrogram. On the other hand, the clusters produced by the complete link algorithm are formed at high dissimilarities in the dissimilarity dendrogram.

3.5 Outlier Detection
Silhouette is an approach to remove outliers. Fundamentally, if the best partition chosen by the silhouette has singletons (i.e., clusters with single object), these are removed. Then, the clustering process is repeated recursively until a partition without singletons is found. Finally, all singletons are incorporated into the resulting data partition (for evaluation purposes) as single clusters [10].

4. Comparative Statement of Various Clustering Techniques

<table>
<thead>
<tr>
<th>Clustering Technique</th>
<th>Complexity</th>
<th>Measure</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-means</td>
<td>O(nki)</td>
<td>Mean</td>
<td>K-means is relatively scalable and efficient in processing large data sets.</td>
</tr>
<tr>
<td>K-medoid</td>
<td>O(tkn)</td>
<td>Medoid</td>
<td>1. K-Medoids method is more robust than k-Means in the presence of noise and outliers. 2. K-Medoids algorithm seems to perform better for large data sets.</td>
</tr>
<tr>
<td>Single link</td>
<td>O(n^2)</td>
<td>Similarity Measure</td>
<td>1. Theoretical properties, efficient implementations, widely used. 2. No cluster centroid or representative required, so no need arises to recalculate the similarity matrix.</td>
</tr>
<tr>
<td>Average link</td>
<td>O(n^2 log n)</td>
<td>Similarity Measure</td>
<td>It is a structure intermediate between the loosely bound single link clusters and tightly bound complete link clusters.</td>
</tr>
<tr>
<td>Complete link</td>
<td>O(n^2 log n)</td>
<td>Similarity Measure</td>
<td>It gives good results as compared to single and average link.</td>
</tr>
<tr>
<td>Fuzzy C-means</td>
<td>O(ndc^2i)</td>
<td>Similarity Measure</td>
<td>Gives best result for overlapped data set and comparatively better then k-means algorithm.</td>
</tr>
</tbody>
</table>
5. Summary

Digital Forensic Investigation is the branch of scientific forensic process for investigation of material found in digital devices related to computer crimes. Process is to analyze the documents present on computer. Due to increasing number of documents and larger size of storage devices makes very difficult to analyze the documents on computer. The main advantage of document clustering here is an unsupervised i.e. number of clusters cannot be predetermined or given by users. Time taken to perform the clustering takes less time based on subjects declared. In this paper, different clustering techniques are compared based on parameters such as similarity measures, complexities and their advantages.

6. Acknowledgment

The authors would like to thank the publishers and researchers for making their resources available. We also thank the college authority for providing the required infrastructure and support. Finally we would like to extend our heartfelt gratitude to friends and family members.

References

Paper ID: SUB14799
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Volume 3 Issue 12, December 2014