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Abstract :  A class of solutions of Einstein’s field equations describing two fluid models of the universe in Kantowski-Sachs Space-
time has been presented, in which the source of gravitational field consist of two commoving perfect fluids. One fluid is a radiation field, 
modeling the cosmic microwave background (CMB), while other is a matter field, modeling the material content of the universe. It is 
found that the both fluids are comoving in Kantowski –Sachs Space-time. The behavior of the radiation density, matter density, the ratio 
of the matter density to the radiation density and the pressure has been discussed. A subclass of solutions is found to describe models of 
a spatially homogeneous and partially isotropic evolving from a radiation dominated era to a pressure free matter dominated era. 
Further a table summarizes the asymptotic properties of all physically relevant variables.  
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1. Introduction  
 
The isotropic and homogeneous space-time due to 
Friedmann, Robertson and walker are simple models of the 
present stage of the expanding universe. Several researchers 
have studied the evolution of isotropic cosmological models 
filled with perfect fluids as well as viscous fluids. The 
discovery of 2.73k isotropic cosmic microwave background 
radiation (CMBR) motivated many researchers to investiga 
FRW with a two- fluid source [1-3]. In the two-fluid model, 
one fluid represents the matter content of the universe and 
another fluid is the radiation field corresponding to the 
observed cosmic microwave background (CMB) radiation 
[3-4]. The large scale matter distribution in the observable 
universe, largely manifested in the form of discrete 
structures, does not exhibit homogeneity of a high order. In 
contrast, the cosmic   background radiation, which is 
significant in the microwave region is extremely 
homogeneous, however, recent space investigations detect 
anisotropy in the cosmic microwave background (CMB). In 
different angular scales, the observations from cosmic 
background explorer’s differential microwave radiometer 
(COBE-DMR) have been detected and measured CMB an 
isotropies. These anisotropies are supposed to hide in their 
fold the entire history of cosmic evolution dating back to the 
recombination epoch and are being considered as indicative 
of the geometry and the content of the universe.    
 
Universe is cooled sufficiently to form atomic hydrogen 
resulting into the release of photons in the recombination 
epoch. These have photons traveled freely through the 
universe forming the presently observed CMB. In 1992, 
COBE discovered temperature variations in the CMB level 1 
part in 100,000. These small anisotropies are believed to 
have the information about the geometry and the content of 
the early universe. More about CMBR anisotropy is 
expected to be uncovered by the investigation of Microwave 
Anisotropy Probe (MAP) and COBRAS-SAMBA (Planck 

Surveyor) satellites. The observed anisotropies of CMB at 
the various angular scales make point of fresh look in the 
investigation of two-fluid models. 
 
Bianchi type space-times exhibit spatial homogeniety and 
anisotropy. It is found that Bianchi Space-times of type I, II 
and VI0 are asymptotically self similar into the past and the 
future [5]. Several cosmologists have constructed two-fluid 
cosmological models in general relativity.Coley and Dunn 
[6] investigated two-fluid Bianchi type VI0 space- time. 
 
The Kantowski–Sachs cosmological models containing 
perfect fluid with a zero cosmological constant was analyzed 
by Collins [7], he has carried out the qualitative study of the 
evolution of the Kantowski-Sachs model. Weber [8] applied 
Collin’s method to a qualitative study of a Kantowski-Sachs 
models, in the presence of a nonzero cosmological constant  
∧ .  
 
Recently, Pant and Oli [9] constructed two-fluid Bianch 
type-II cosmological models. Oli [10, 11] have studied two –
fluid Bianchi type-I cosmological models with and 
withoutvariable G and ∧ . Adhav et.al. [12-14] have studied 
anisotropic homogeneoue two-fluid cosmological models in 
Bianchi type-III and V space-times and also presented 
kantowski-Sachs model in presence of perfect fluid coupled 
with massless scalar field in general relativity.Katore 
et.al.[15] constructed Plane symmetric cosmological models 
with perfect fluid and dark energy. Two fluid cosmological 
models in higher dimensions have been presented by Mete 
et.al [16-18]. 
 
The main purpose of this paper is to construct two fluid 
Kantowski-Sachs space-time in the frame work of general 
relativity. In this paper, we have investigated physically 
sound co-moving two-fluid models in Kantowski-Sachs 
space-time. 
 

Paper ID: SUB14683 1332

http://creativecommons.org/licenses/by/4.0/�


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 12, December 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

2. Metric and Field Equations 
 
We consider the Kantowski-Sachs space-time is given by 
 ( )22222222 sin φθθ ddSdrRdtds +−−=  , (1) 
where R and S are functions of time t only.  
The field equations are 
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m
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−=  is the Einstein’s tensor. )(m
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the energy momentum tensor for matter field described by a 
perfect fluid with density mρ , pressure mp  and four 
velocity   
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The off diagonal equations of (2) together with energy 
conditions  
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From (3), (4) and (7), 
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0 == rm uu ,         (8) 
In our model, matter field and radiation field both are 
comoving. 
From (5), (6), (7) and (8) the surviving field equations (2) 
are 
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where overhead dot (.) denotes differentiation with respect 
to cosmic time t .  
Out of these three equations in five unknowns R, S, mρ , 

mp , and rρ only three are independent which may be 
written as follows: 
 
Substracting equation (10) from equation (11), we get 
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From equations (9), (10) and (11), we get 
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Here there are five unknowns viz. R, S, mρ , mp , and 

rρ .Thus to get a solution we require two additional 
relations among the field variables R, S and fluid variable 

mρ , mp , and rρ .  One of the additional relations will 
invariably be the equation of state of the matter field.  
We assume a  γ - law for the equation of state : 

21,)1( ≤≤−= γργ mmp   
The field equations are highly non-linear .Therefore we 
require another relation between R and S   to solve the field 
equation (12) . In the following sections we shall explore 
various possibilities in this respect so as to obtain physically 
meaningful models. 
 
3. Power-Law Solution 
 
Here we consider power law form for R and S : 
        nm BttSAttR == )(,)(  ,  
where A, B, m and n are constants. Equation (12) yield 
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The resulting solution is  
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The solution is physically insignificant as either of mρ , rρ  
becomes positive in the range  0 < 1 < m.  

 
4. A Class of Physically Meaningful Solutions 
 
By the transformation 

StR )(λ=    
Equation (12) reduces to 
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Here we have followed the method of Pant and Oli [9].  
Equation (19) a is first order linear differential equation in 

2S  and can be solved easily by a proper choice of )(tλ  
corresponding to the other required additional relation. Here 
we assume a power law form for λ  : 

nt −=λ  ,   
where n is a non-zero arbitrary constant. 
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The resulting solution is given by 
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where 2,0≠n  and C is an arbitrary constant.The above is a 
class of solutions with n as  
parameter.  
From (21a, b) and (22), we have the following realistic 
conditions on C, n and V(t) : 
C > 0,    n > 0,       V(t) > 0 (23 a) 
C > 0,    2< n < 0,   V(t) < 0 (23 b) 
C > 0,    (n-2) < 0,   V(t) < 0 (23 c) 
The set of conditions (23a) limits the validity of the solution 
(21) to a finite interval of time : 

)2(2
3

00 −−=<≤ nCtt ,   (24 a) 
On the other hand, the set of conditions (23 b, c) put a lower 
bound on t : 

)2(2
3

0
−−=> nCtt .   (24 b) 

Moreover,we note that since (15) is the equation of state for 
the matter distribution which is distinct from the radiation 
field, γ is restricted to the following range in view of   
(21 c, 21d) : 

 
3
41 ≤≤ γ     (25) 

However, the solution (21) can also be used to construct 
another class of physically meaningful models for 

2
3
4
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Our aim is to find suitable intervals of time, from the ranges 

provided by (24 a), (24 b), in which mρ , rρ , mp and 
r
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ρ

 

behave reasonably.For a physically meaningful model 
0≥mρ , 0≥rρ , 0≥mp . Also, for the evolution of the 

universe from a radiation dominated stage to a matter 
dominated stage, rρ must decrease faster than mρ . Such 
property can be ascertained by the study of the function 

r

m

ρ
ρ

 which, for a reasonable model of universe, must be a 

monotonically increasing function of time. 
Further,from equation (21), we observe that rρ is quadratic 
function of V (t), so that vanishing of each density will 
correspond to two values of V (t) for given n and γ. 
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Now it is not difficult to explore the nature of mρ  in A < 

V(t) < B and that of rρ in a < V(t) < b. Having done so, we 
shall seek an interval for V(t) or in other words an interval 
for t where mρ  and rρ are non-negative functions : 
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Here the constant C provides a scaling factor for time. By 
proper choice of C, the interval of time ( )21,tt  is taken large 
enough. It is found that the solution (21) describes a class of 
reasonable models of the universe in a finite interval of time 
(30) for n < -2.5, provided γ is restricted by (25). In case γ  
obeys (26), one gets reasonable models for  
n > 2.5.  
 
5. Investigation of Dust Models 
 
Here we shall present a detailed study of the solution (21) 
with  

0=mρ  or γ = 1     
       (31)   
The solution for the exploration of physically meaningful 
dust models for different ranges of values of  n ,  will be 
investigated  as : 
 
In view of (23), it is to be noted that for V(t) > 0, the 
possibility of the existence of a physically meaningful model 
lies only in the interval bounded by 
V (t) = b, V (t) = B  ,  
 
where as for V(t) < 0, for a meaningful investigation, our 
study will be limited to the interval bounded by  
V(t) = a, V (t) = A    
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Table 1: Various parameter associated with the dust models corresponding different values of n 
S. n A B a b V(t1) V(t2) 

)2(2
3

1
−nCt  )2(2

3

2
−nCt  ( ) )2(

3

1
−

−
n

r Ctρ  ( ) )2(
3

2
−

−
n

m Ctρ  

1 2.5 -2.26974 0.5 -2.28194 0.5 0.5 0.5 0 0 0 0 

2 2.6 -2.49285 0.29245 -2.48877 0.30669 0.30669 0.29245 1.11808 0.88181 1.15384 6.94532 

3 2.7 -2.51044 0.34407 -2.50151 0.34528 0.34528 0.34407 0.94383 0.93003 1.93089 7.10331 

4 3 -2.55344 0.47905 -2.52874 0.48141 0.48141 0.47905 0.89440 0.88181 3.50669 10.9658 

5 3.3 -2.88364 0.63511 -2.82343 0.63871 0.63871 0.63511 0.96070 0.94850 4.62243 12.7410 

6 3.5 -2.91854 0.73469 -2.84403 0.75 0.75 0.73469 0.74157 0.95999 5.4375 14.7815 

7 4 -3.39305 0.99783 -3.25423 1.00207 1.00207 0.99783 1.00310 0.99675 8.63271 20.1087 

8 5 -3.56865 1.46938 -3.32442 1.66666 1.66666 1.46938 1.11802 0.97979 15.4074 37.0751 

9 6 -4.41878 1.94338 -3.99448 1.96627 1.96627 1.94338 1.98742 0.99856 28.8826 56.7656 

10 7 -4.57930 1.98947 -4.98761 2.38344 2.38344 1.98947 0.97239 0.85588 43.1739 94.6229 

11 8 -5.03997 2.91544 -5.10664 2.92108 2.92108 2.91544 0.98692 0.98600 59.9003 113.173 

12 9 -5.58786 3.48600 -5.44899 3.51951 3.51951 3.48600 1.00239 0.99828 80.0018 154.424 

13 10 -6.05589 3.77921 -6.01983 3.86201 3.86201 3.77921 0.98714 0.99348 101.541 186.328 

14 20 -11.4333 8.91848 -10.9957 10.5377 10.5377 8.91848 1.02917 0.99849 542.329 833.349 

15 50 -29.2304 21.7476 -27.3036 23.6166 23.6166 21.7476 0.99900 0.99413 3286.24 5270.86 

16 100 -52.6098 47.4405 -52.1817 47.9060 47.9060 47.4405 0.99931 0.99902 13446.5 22822.64 

17 1000 -569.400 447.477 -448.775 567.780 567.780 447.477 1.00041 0.99968 1618862.5 1621615.05 

18 10,000 -5021.40 4480.62 -4980.10 5685.09 5685.09 4480.62 1.000041 0.999968 162318775.8 162703324.8 

19 10,0000 -50236.6 44812.06 -49794.6 56858.2 56858.2 44812.06 1.0000041 0.9999968 1.62392589 x  1010 1.627575403 x 1010 

 
Table 2: Variation of radiation density matter density and 

ratio of matter density to radiation density in the dust model 
from the epoch t = t1 to t = t2 for n = 3 

S.No. tC 2
3

 mC ρ3−  
rC ρ3−  

r

m

ρ
ρ  

1. 
1

2
3

tC =0.89440 10.6788 3.50669 3.04526 

2. 0.89356 10.6980 3.51223 3.04587 
3. 0.89272 10.7173 3.51779 3.04660 
4. 0.89188 10.7365 3.52336 3.04728 
5. 0.89104 10.7559 3.52893 3.04792 
6. 0.89020 10.7758 3.53452 3.04873 
7. 0.88936 10.7946 3.54011 3.04922 
8. 0.88852 10.8140 3.54571 3.04988 
9. 0.88768 10.8335 3.55132 3.05055 

10. 0.88684 10.8530 3.55693 3.05122 
11. 0.88600 10.8725 3.56256 3.05187 
12. 0.88516 10.8921 3.56820 3.05254 
13. 0.88432 10.9117 3.57384 3.05321 
14. 0.88348 10.9313 3.57949 3.05387 
15. 0.88264 10.9510 3.58515 3.05454 

16. 
2

2
3

tC =0.88181 10.9658 3.58940 3.055050 

 

Case (i)  :  0 < n < - 2.5. In this case 0>mρ , 0>rρ  in the 
interval AtVa << )( . 
Case (ii) :  n = -2.5. Here  a< A.  Thus no interval exists for 
a meaningful model. 
Case (iii) : ,21 nnn <<  2≠n , where <1n -2.5 and 

02 <n  are the roots of equation. 

                  .068896.10223.166666.0 2 =−+ nn  
In this range of values of n;  A and B becomes imaginary and 

rρ  is positive for all t. 
Case (iv) :  n = n1 . n2 .  In these cases  B > A and  0≥mρ ,  
Case (v)  :  -2.5 < n < n1, 0>mρ ,  0>rρ  in the interval 

AtVa << )(  . 
Case (vi) :  =n 2.5. Here B = b. Thus no interval exists for 
a meaningful model.  
Case (vii) : >n 2.5. In this case A < a < B < b.  
We find 0≥mρ ,  0≥rρ  in the following interval for  

:)( otV >  

     BtVtVtVb =≤≤= )()()( 21
. 

Since ( ) 01 =trρ , ( ) 02 =tmρ  and 
21 tt > , the solution 

describes a set of models where in the early stages matter 
dominates radiation and in later stages radiation dominates 
matter. This does not agree with the actual universe. 
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Case (viii) : n < - 2.5 . In this case A < a < b < B and  
0≥mρ ,  0≥rρ  ,  in the interval   

    atVtVtVA =≤≤= )()()( 21
 . 

Here ( ) 01 >tmρ , ( ) 02 >trρ  and 
21 tt <  . This corresponds 

to a class of models where the matter density increases with 
time, whereas the radiation density which is increases. For n 
> 2.5, the solution (21) provides a class of dust models in 

which, for the time interval 






 −−
2

)2(2
3

1
)2(2

3

, tCtC nn . 
mρ  and  

rρ  are positive and the ratio 
r

m

ρ
ρ  is monotonically 

increasing.  
 
6. Conclusion 
 
In this paper we present a class of solutions of Einstein’s 
field equations describing two fluid models of the universe 
in Kantowski-Sachs Space-time. In these models one fluid is 
the radiation distribution which represents the cosmic 
microwave background and the other fluid is the perfect 
fluid representing the matter content of the universe. It is 
found that the both fluids are comoving in Kantowski –
Sachs Space-time. 
A numerical study of the model has been presented by 

calculating A, B, a, b, )( 1tV , )( 2tV ,  ,1
)2(2

3

tC n−  2
)2(2

3

tC n− , 

( )2tmρ , ( )1trρ  for some values of n > 2.5 (Table – I).  As an 
illustration of the physical behaviour of the model, the 

variation of   
mρ , 

rρ , 
r

m

ρ
ρ  in the interval  








 −−
2

)2(2
3

1
)2(2

3

, tCtC nn  is obtained for n = 3 (Table -II).  A 

qualitative study of two fluid Kantowski-Sachs Space-time 
has been presented. 
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