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Abstract: This paper is concerned with the determination of displacement and thermal stresses in a thin rectangular plate due to 
internal heat generation within it. Initially the plate is at arbitrary temperature f(x, y), while the boundary at y = 0 is kept at temperature 
ϕ (x, t) and the remaining boundaries are kept at zero temperature. The governing heat conduction equation has been solved by the 
method of double integral transform technique. The results are obtained in series form in term of circular functions. The results for 
displacement and thermal stresses have been computed numerically and illustrated graphically. 
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1. Introduction 
 
Rectangular plates are one of the most widely used structural 
elements in various engineering applications such as the 
pavements of highways and airports, building walls and 
bridge decks and so on. In most cases, the plates have to 
carry various loads. Therefore, a thorough understanding of 
their mechanics Characteristics is essential for designers. 
 
Ootao et al. [1] studied theoretical analysis of a three 
dimensional transient thermal stress problem for a non-
homogeneous hollow circular cylinder due to a moving heat 
source in the axial direction from the inner and outer 
surfaces. Tanigawa et al. [2] have studied theoretical analysis 
of two dimensional thermoplastic bending deformation of 
plate subjected to partially distributed heat supply. Tanigawa 
at al. [3] have discussed stress analysis of a rectangular plate 
and its thermal stress intensity factor for compressive field. 
Vihak et al. [4] have investigated the solution of the plane 
thermoelasticity problem for a rectangular domain. Adam et 
al. [5] have determined thermoelastic vibration of a 
laminated rectangular plate subjected to a thermal shock. 
Ghadle et al. [6] have studied the study of an inverse steady-
state thermoelastic problem of a thin rectangular plate. 
Gaikwad et al. [7] have studied the quasi-static thermal 
stresses in a thick rectangular plate subjected to constant heat 
supply on extreme edges where as the initial edges are 
thermally insulated. Recently, Salve et al. [8] studied an 
inverse transient quasi-static thermal stresses problem in a 
thin rectangular plate. 
 
In this article, we analyzed a non-homogeneous heat 
conduction problem due to internal heat generation in a thin 
rectangular plate and determined the expressions for 
temperature, displacement and thermal stresses. Initially, the 
plate is at arbitrary temperature f(x, y), while the boundary at 
y=0 is kept at temperature ϕ(x, t) and the remaining 
boundaries are kept at zero temperature. The governing heat 
conduction equation has been solved by the method of 
double integral transform technique. The results are obtained 
in series form in term of circular functions. The results for 

thermal displacement and stress components have been 
computed numerically and illustrated graphically. 
 
To the author knowledge, no literature on quasi-static 
thermal stresses in a thin rectangular plate due to heat 
generation has been published. The results presented here 
will be more useful in engineering problem particularly, in 
the determination of the state of strain in thin rectangular 
plate constituting foundations of containers for hot gases or 
liquids, in the foundations for furnaces etc. 
 
2. Formulation of the Problem 
 
Consider a thin rectangular plate occupying the 
space : 0 , 0D x a y b≤ ≤ ≤ ≤ . Initially the rectangular plate 
is at arbitrary temperature f(x, y). For time t > 0, heat is 
generated within the solid at a rate of g(x, y, t) Btu/hr ft3, 
while the boundary at y = 0 is kept at temperature ϕ (x, t) and 
the remaining boundaries are kept at zero temperature. Under 
these realistic prescribed conditions, the displacement and 
thermal stresses in a thin rectangular plate due to internal 
heat generation are required to be determined. 
 
The temperature T(x, y, t) of the thin rectangular plate 
satisfies the heat conduction equation, 
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with the boundary conditions, 
0T =  at 0, 0 , 0x y b t= ≤ ≤ >  (2) 
0T =  at , 0 , 0x a y b t= ≤ ≤ >  (3) 

( , )T x tφ=  at 0, 0 , 0y x a t= ≤ ≤ >  (4) 
0T =  at , 0 , 0y b x a t= ≤ ≤ >  (5) 

and the initial condition 
 
T(x, y, t) = f(x, y) at t = 0, 0 , 0x a y b≤ ≤ ≤ ≤  (6) 
where k and α  are thermal conductivity and thermal 
diffusivity of the material of the plate. 
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Here the plate is assumed sufficiently thin and considered 
free from traction. Since the plate is in a plane stress state 
without bending. Airy stress function method is applicable to 
the analytical development of the thermoelastic field. Airy 
stress function U(x, y, t) which satisfy the following relation 
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Where λ  and E are linear coefficient of the thermal 
expansion, Young’s modulus elasticity of the material of the 
plate. 
The displacement components xu  and yu  in the X and Y 
direction are represented in the integral form as 
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where v  is the Poisson’s ratio of the material of the plate. 
The stress components in terms of U are given by 
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Equations (1) to (12) constitute the mathematical formulation 
of the problem under consideration. 
 
3. Solution of the Heat Conduction Problem 
 
To find the temperature function T(x, y, t) we introduce the 
“double-integral transform” and its corresponding “double-
inversion formula” as defined in Ozisik [9] respectively as 
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where the kernels 
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and eigenvalues are  

mβ  is thm  root of transcendental equation ( )sin 0m aβ =  

i.e. , 1, 2,3,...m
m m
a
πβ = =  (17) 

nν  is thn  root of transcendental equation ( )sin 0n bν =  

i.e. , 1, 2,3,...n
n n
b
πν = =  (18) 

On applying double-integral transform defined in equation 
(13) to Eqs. (1) - (3) and then using their inversions defined 
in equation (14), one obtains the expressions of the 
temperature as 
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4. Airy’s Stress Function 
 
Using equation (19) in (7), one obtains 
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5. Displacement Components 
 
Now using equations (19) and (20) in equations (8) to (12), 
one obtains 
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6. Thermal Stresses 
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7. Special case and Numerical calculations 
 
Setting 
f(x, y) = (a − x)(1 − ex)(b − y), 
g(x, y, t) = gi δ(x − x0) δ (y − y0) δ (t −τ) Btu/hr.ft3 and 
ϕ(x, t) = (a − x) (1 − ex) (1 − et ) 
where δ is the Dirac-delta function, A > 0. 
 
The heat source g(x, y, t) is an instantaneous line heat source 
of strength gi=50 Btu/hr.ft, situated at the center of the 
rectangular plate and releases it’s instantaneously at the time 
t = τ = 2 hr. 
 
Dimension 
Length of rectangular plate a = 2 ft 
Breadth of rectangular plate b= 1 ft 
Central length of rectangular plate x0 = 1 ft 
Central breadth of rectangular plate y0= 0.5 ft. 
 
Material Properties 
 
The aluminum (pure) rectangular plate is chosen for purpose 
of numerical evaluations.  
The associated constants are taken as, 
Density ρ= 169 lb/ft3, 
Specific heat cp=0.208 Btu/lb0F, 
Thermal conductivity k= 117 Btu/(hr.ft. 0F), 
Thermal diffusivity α= 3.33 ft2/hr, 
Coefficients of thermal expansion λ = 12.84 ×10−6 1/F 
Young’s modulus elasticity of the material of the plate E = 70 
GPa, 
Poisson ratio ν = 0.35. 
 

For convenience setting 4 EA
ab
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Also the term ( )sin m xβ and ( )cos m xβ are bounded. 
 
Thus necessary condition for convergence is satisfied, by 
applying D-Alembert’s ratio test it can be easily verify that 

all the series in (19) to (25) are convergent. Also the term in 
the expression for displacements and stresses are negligible 
for large value of m and n it converges to zero at infinity. The 
numerical calculation has been carried out with help of 
computational mathematical software Mathcad-2007, and the 
graphs are plotted with the help of Excel (MS Office-2007). 

  
8. Discussion 
 
In this study, we analyzed a non-homogeneous heat 
conduction problem due to internal heat generation in a thin 
rectangular plate. As an illustration, we carried out numerical 
calculations for the aluminum (pure) rectangular plate. The 
heat source g(x,y,t) is an instantaneous line, heat source of 
strength gi, is situated at center of the rectangular plate in X 
and Y direction and releases instantaneously at the time t = τ 
= 2 hr. The thermoelastic behavior is examined such as 
temperature, displacement and stress components with the 
help of temperature.  
 

 
Figure 1: The displacement function ux /A in X direction 

 
From Fig. 1 and 2, it is observe that the displacement 
function ux decreases from the inner boundary surface to the 
outer boundary surface and it becomes zero at x = 2 in X 
direction and y = 0.8 in Y direction. 
 

 
Figure 2: The displacement function ux /A in Y direction. 
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Figure 3: The displacement function uy /A in X direction. 

 

 
Figure 4: The displacement function uy /A in Y direction. 

 
From Fig. 3 and 4, it is clear that the displacement function 
uy increases from the inner boundary surface to the outer 
boundary surface and it becomes zero at x = 0.5 in X 
direction and y = 1 in Y direction. 

 

 
Figure 5: The stress function σxx /A in X direction 

 

 
Figure 6: The stress function σxx /A in Y direction. 

 

From Fig. 5 and 6, it is clear that the stress function 
xxσ decreases non-uniformly from the inner boundary surface 

to the outer boundary surface and it becomes zero at x = 0.8 
in X direction and y = 0.4 in Y direction. 

 
Figure 7: The stress function σyy /A in X direction. 

 

 
Figure 8: The stress function σyy /A in Y direction. 

From Fig. 7 and 8, it is clear that the stress function yyσ  
decreases from the inner boundary surface to the outer 
boundary. It is zero at the center x = 1 in X direction and y = 
0.5 in Y direction. 

 
Figure 9: The stress function σxy /A in X direction. 

 

 
Figure 9: The stress function σxy /A in X direction. 
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From Fig. 9 and 10, it is clear that the stress function xyσ  
decreases from the inner boundary surface to the outer 
boundary. It is zero at the center x = 1 in X direction and y = 
0.5 in Y direction and displaces upward in both X and Y 
direction. 
 
9. Concluding Remarks 
 
In this article, we extend the problem studied by Salve et al. 
[8], the thermal stress problem in a thin rectangular slab 
without heat generation. We have considered the thermal 
problem with heat generation. The displacement and thermal 
stresses of a non-homogeneous heat conduction problem in a 
thin rectangular under unsteady-state temperature field due to 
internal heat generation is presented. The present method is 
based on the direct method, using the double integral 
transform technique and their inversion. We observe that a 
displacement and stress component occurs near heat source. 
Due to internal heat generation within the thin rectangular 
plate, from the figure of displacement, the direction of heat 
flow in X and Y are opposite to each other and they are 
inversely proportional. Also, it can be observe that, the stress 

function xxσ  develops the tensile stress and yyσ  develops the 
compressive stress in both X and Y direction.  
 
The results, obtained here mainly applicable in engineering 
problems, particularly for industrial machines subjected to 
the heating such as the main shaft of a lathe, turbines, the roll 
of rolling mill and practical applications in air-craft 
structures. Also any particular case of special interest can be 
derived by assigning suitable values to the parameters and 
functions in the expressions (19)–(25). 
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