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Abstract: The modern jet engine consists of various control loops and subjected to several disturbances. The design of controller under 
the presence of parametric uncertainties is a difficult task. In this paper, an interval analysis is proposed for design of a robust PI/PID 
controller for jet engine. The proposed method applied to acceleration control loop of a jet engine in the presence of parametric 
uncertainties. The proposed method uses necessary and sufficient conditions for stability of interval polynomials. These conditions are 
used to derive a set of inequalities in terms of the controller parameters which are solved and find the optimal control parameters with 
the help of particle swarm optimization. The results show the efficiency of the proposed topology. 
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1. Introduction 
 
The performance requirements of modern, high technology 
aircraft have placed severe demands to engine control 
capability. Control requirements applied to gas turbine 
engines consist of ensuring safe, stable engine operation. 
Specific engine performance rating points are generally 
defined as basic steady state design goals for the control. A 
review of the basic theory of aero gas turbine engine 
operation and on Control Design which is currently in 
commercial and military use is dealt by Spang and Brown 
[1]. 
 
 The control logic of the modern Full Authority Digital 
Engine Control (FADEC) having many control loops, each 
has a specific function. Control loops include a high or low 
rotor speed governor, an acceleration and deceleration loop, 
and various limiting loops for temperature, speed and fuel 
flow. With electronic controls, more accurate control of 
engine thrust can be obtained through control of compressor 
speed [2]. A block diagram of a typical compressor speed 
control is shown in Fig1. 

 
Figure 1: Block diagram of Compressor Speed control Loop 

of Jet Engine 
 

A compressor speed demand schedule establishes the desired 
compressor speed as a function of inlet temperature and 
throttle position. A variant of proportional control uses the 
derivative of rotor speed (N dot) to control engine 
acceleration and deceleration as a function of inlet 
temperature. A block diagram of aNdot control is shown in 
Fig2. 

 
Figure 2: Jet Engine’s Ndot controller Block diagram 

 
Direct control of acceleration, rather than speed, allows 
tighter control of engine acceleration thereby improving 
transient response and reducing mechanical stress. 
 
All existing systems are subject to various disturbances and 
uncertainties. Robust stability analysis with uncertain 
parameters has been very important research topic. Since 
control systems operate under large uncertainties it is 
important to study stability robustness in the presence of 
uncertainty. The uncertainty in the control system causes 
decrease of system performance and destabilization. An 
important approach to this subject is via expressing the 
characteristic polynomial by an interval polynomial, i.e. a 
polynomial whose coefficient each varies independently in a 
prescribed interval. The stability analysis of polynomials 
subjected to parameter uncertainty have received 
considerable attention after the celebrated theorem of 
Kharitonov [3], which assures robust stability under the 
condition that four specially constructed “extreme 
polynomials”, called Kharitonov polynomials are Hurwitz. 
The problem of robust stability of interval polynomial is also 
dealt in [4, 5, 6, 7, 8, 9, 10]. Several results have appeared in 
the literature which aims at reducing test of Hurwitz stability 
of entire family to a small subset of entire family. In this 
regard few extreme point results are available in the 
literature. These includes work due to Ghosh [11], where he 
has shown that a pure gain controller C(s)=k stabilizes entire 
interval plant family if and only if it stabilizes a 
distinguished set of eight of the extreme plants. Hollot and 
Fang [12] considered the same setup as Ghosh but allow the 
controller to be first order. They prove that to robustly 
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stabilize the entire family, it is necessary and sufficient to 
stabilize the set of extreme plants which are obtained by 
taking all possible combinations of extreme values of the 
plant numerator coefficients with extreme values of the plant 
denominator coefficients.  
 
If the plant numerator has degree m and the plant 
denominator is monic with degree n, the number of extreme 
plants can be as high as Next=2m+n+1 In [13], Barmish 
proved that, it is necessary and sufficient to stabilize only 
sixteen of the extreme plants. A complete survey of these 
extreme points is given in [14]. In [10], a necessary 
condition and sufficient condition for interval polynomials is 
proposed using the results of Nie [15] for fixed polynomials.  
 
In the present paper, a method using interval analysis 
approach is proposed for the synthesis of a robustly 
stabilizing controller of a jet engine interval plant having 
parametric uncertainties using the robust stability conditions 
in [10]. The method is simple compared to approaches in 
[16, 17]. Basic definitions and important properties related to 
interval analysis are discussed in [18]. 
  
The present paper is organized as follows. In section 2 we 
give necessary condition and sufficient condition for robust 
stability of interval polynomial. Section 3 deals with design 
procedure for robust stability of interval plants. Section 
4,Propose a particle swarm optimization to find optima 
control parameters. Section 5, the design of a robust 
controller is carried out using proposed technique for 
acceleration control loop with the manipulated variable as 
main burner fuel flow and controlled variable as the 
compressor speed acceleration. Conclusions are drawn in 
section 6. 

2. Conditions for Robust Stability of Interval 
Polynomial 

 
Consider the set of real polynomials of degree nof the form 

 
Where the coefficients lie within given ranges, 

 
 
We assume that the degree remains invariant over the family, 

 
Such a set of polynomial called a real interval family and is 
referred as an interval polynomial. The set of polynomials 
given by (1) is stable if and only if each and every element of 
the set is a Hurwitz polynomial. In [10] a necessary 
condition and sufficient condition for the robust stability of 
interval polynomial (1) is proposed using the algebraic 
stability criterion for fixed polynomials due to Nie [15] 
which are stated in the following lemmas. 
 

 
 
Defined in (1) is Hurwitz for all where i=0, 1, 2… n if the 
following necessary conditions are satisfied 

 

. 

Proof: See [10]. 

 
Defined in (1) is Hurwitz for all where i=0, 1, 2,…,n if the 
following necessary conditions are  
   

 
Proof: See [10]. 
 
3. Design Steps for Robust Stabilization of 

Interval Plants 
 
Consider a interval plant consisting of all plants of the form, 

 
where the numerator and denominator polynomials are of the 
form 

 
where vectors p and q lie in given rectangles P and Q, 
respectively, i.e., 

 
 

are 
specified a prior. To stabilize the interval plant family we 
consider a proper PI or PID controller and its transfer 
function is given by  

 

 
 

 
, for all and all, 

 
 

has all its roots in the strict left half plane; that is 
 

 This is being the case, C(s) is said to 
be a robust stabilizer and the closed loop system is said to be 
robustly stable. Let the closed loop interval polynomial be in 
the form 

 
 
The stability conditions in (2) and (3) can be applied to 
closed loop characteristic polynomial in (7), which leads to 
inequalities in terms of controller parameters. These 
inequalities can be solved to obtain controller parameters. 
Even though the method in [13] provides a necessary and 
sufficient condition for robust stabilization using only 
sixteen extreme plants and which is used in [16] to obtain a 
robust controller for jet engine, the method still involves 
much computational complexity since it is required to 
construct sixteen Routh table and solve the constraints 
(obtained by enforcing positivity in the first column of the 
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Routh table) for stability. Although the method in [10] is 
based or necessary Condition and sufficient condition it 
involves less Computational complexity and provides a 
simple Way to obtain a robust controller as can be seen from 
the application of the method for robust control of the Jet 
engine. 
 
4. Particle Swarm Optimization Algorithm 

Operation [19]: 
 
Particle Swarm Optimization optimizes an objective function 
using population based search. The population consists a 
group of solutions; named particles are randomly initialized 
and freely fly across the multi-dimensional search space. 
During flight, each particle updates its own velocity and 
position based on the best experience of its own and the 
entire population. The various steps involved in Particle 
Swarm Optimization algorithm are as follows: 
 
Step 1: The velocity and position of all particles are 
randomly set to within pre-defined ranges. 
 
Step 2: Velocity updating at each iteration, the velocities of 
all particles are updated according to, 

 
where pi and vi are the position and velocity of particle i, 
respectively; pbest and gbest is the position with the ‘best’ 
objective value found so far by particle i and the entire 
population respectively; w is a parameter controlling the 
dynamics of flying; R1 and R2 are random variables in the 
range [0,1]; c1 and c2 are factors controlling the related 
weighting of corresponding terms. The random variables 
help the PSO with the ability of stochastic searching. 
 
Step 3: Position updating- The positions of all particles are 
updated according to, 

 
after updating, pi should be checked and limited to the 
allowed range. 
 
Step 4: Memory updating – Update pi,best and gi,best when 
condition is met, 

 
 
Where: f(x) is the fitness function to be optimized. 
 
Fitness Function: 
 
 The fitness function to be minimized is the ISE performance 
criterion. The integral square error (ISE) criterion is defined 
as 

 
Where: r(t)=reference signal 
 y(t)=output signal measured 
 
Step 5: Stopping Condition – The algorithm repeats steps 2 
to 4 until certain stopping conditions are met, such as a pre-
defined number of iterations. Once stopped, the algorithm 

reports the values of gbest and f(gbest) as its solution. 
 
PSO utilizes several searching points and the searching 
points gradually get close to the global optimal point using 
its pbest and gbest. Initial positions of pbest and gbest are 
different. However, using different direction of pbest and gbest, 
all agents gradually get close to the global optimum. The 
above steps are resolved in to a flowchart as shown in Fig3. 

 
Figure 3: Flowchart of particle swarm optimization (pso) 

 
5. Jet Engine Application 
 
Consider the SISO Jet engine interval plant with input as fuel 
flow and output as acceleration of compressor speed, Ndot 
(refer fig.2) 

 
Let uncertainty bounds are 

 
 
Design of Robust PI controller: 
 
Let us synthesize a controller of the form 

 
to stabilize the interval model of jet engine. The C(s) will 
stabilize the given model of jet engine if the closed loop 
interval polynomial in (7) is stable. The closed loop interval 
polynomial in (7) becomes 

 
 
On applying the necessary and sufficient conditions given in 
section2 to this polynomial the following inequality 
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constraints are obtained. 

 
By solving these above constraints to find the range of k1, 
k2and are optimized with the help of proposed PSO 
algorithm in section4 to obtain optimal k1, k2 values for a 
minimized ISE. 
 
The control parameters are k1=0.0258, k2=0.0000154 and 
ISE=1.69x10-16 

 
Then the set Kharitonov polynomials are: 

 
All the four Kharitonov polynomials are Hurwitz stable. 
Hence the designed PI controller stabilizes the jet engine. 
The closed-loop step response for k1=0.0258 and 
k2=0.0000154 are shown in Fig4. 

 
Figure 4: Closed loop step response with designed PI 

controller for all extreme plants 
 
Design of PID controller: 
 
Let us synthesize a controller of the for 

 
to stabilize the interval model of jet engine. The C(s) will 
stabilize the given model of jet engine if the closed loop 
interval polynomial In (7) is stable. The closed loop interval 
polynomial in (7) becomes 

 
On applying the necessary and sufficient conditions given in 
section2 to this polynomial the following inequality 
constraints are obtained. 

 
By solving these above constraints we get the controller 
parameters k1=0.438, k2=0.0003, k3=0.49 and ISE=1.69x10-

16 

 
Then the set Kharitonov polynomials are: 

 
All the four Kharitonov polynomials are Hurwitz stable. 
Hence the designed PID controller stabilizes the jet engine. 
The closed-loop step response for k1= 0.438, k2=0.0003 and 
k3=0.49 are shown in Fig5. 
 

 
Figure 5: Closed loop step response with designed PID 

controller for all extreme plants 
 
6. Conclusions 
 
In this paper, a new approach using interval analysis is 
proposed for design of a robust controller to jet engine. The 
proposed method is applied to synthesize the acceleration 
control loop of a jet engine in the presence of parametric 
uncertainties. The proposed topology uses a necessary 
condition and sufficient condition for stability of interval 
polynomial. These conditions are used to derive a set of 
inequalities in terms of the controller parameters which can 
be solved to obtain a robust controller. Although the 
proposed method is based on a necessary condition and a 
sufficient condition it is simple, involves less computational 
complexity and provides an easy method to obtain a robust 
controller. The PSO Algorithm is used to determine the 
optimal control parameters for a minimized ISE which are 
obtained with the help of MATLAB [20]. The extension of 
this technique using Artificial intelligence to tune the PI/PID 
parameters is a part of further research work. The results 
show the efficacy of the proposed method. 
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