
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Design of a High Performing Cloud Using Load
Rebalancing Technique in Distributed File System

Y. Steeven1, C. Prakasha Rao2

1M. Tech Student, Prakasam Engineering College, Kandukur, Prakasam (Dt), India

2M.Tech, [Ph.D] Associate Professor, CSE Department, Prakasam Engineering College, Kandukur, Prakasam (Dt), India

Abstract: Distributed file systems are key building blocks for cloud computing applications based on the Map Reduce programming
paradigm. In such file systems, nodes simultaneously serve computing and storage functions; a file is partitioned into a number of
chunks allocated in distinct nodes so that MapReduce tasks can be performed in parallel over the nodes. However, in a cloud computing
environment, failure is the norm, and nodes may be upgraded, replaced, and added in the system. Files can also be dynamically created,
deleted, and appended. This results in load imbalance in a distributed file system; that is, the file chunks are not distributed as uniformly
as possible among the nodes. Emerging distributed file systems in production systems strongly depend on a central node for chunk
reallocation. This dependence is clearly inadequate in a large-scale, failure-prone environment because the central load balancer is put
under considerable workload that is linearly scaled with the system size, and may thus become the performance bottleneck and the single
point of failure. In this paper, a fully distributed load rebalancing algorithm is presented to cope with the load imbalance problem. Our
algorithm is compared against a centralized approach in a production system and a competing distributed solution presented in the
literature. The simulation results indicate that our proposal is comparable with the existing centralized approach and considerably
outperforms the prior distributed algorithm in terms of load imbalance factor, movement cost, and algorithmic overhead. The
performance of our proposal implemented in the Hadoop distributed file system is further investigated in a cluster environment.

Keywords: Cloud Computing, Load Rebalancing, Distributed File System, Movement Cost, Network Traffic

1. Introduction

Cloud Computing (or cloud for short) is a compelling
technology. In clouds, clients can dynamically allocate their
resources on-demand without sophisticated deployment and
management of resources. Key enabling technologies for
clouds include the Map Reduce programming paradigm [1],
distributed file systems, virtualization, and so forth. These
techniques emphasize scalability, so clouds can be large in
scale, and comprising entities can arbitrarily fail and join
while maintaining system reliability. Distributed file systems
are key building blocks for cloud computing applications
based on the Map Reduce programming paradigm. In such
file systems, nodes simultaneously serve computing and
storage functions; a file is partitioned in to a number of
chunks allocated in distinct nodes so that Map Reduce tasks
can be performed in parallel over the nodes.

In such an application, a cloud partitions the file into a large
number of disjointed and fixed-size pieces (or file chunks)
and assigns them to different cloud storage nodes (i.e.,
chunk servers). Each storage node (or node for short)then
calculates the frequency of each unique word by scanning
and parsing its local file chunks. In such a distributed file
system, the load of a node is typically proportional to the
number of file chunks the node possesses. Because the files
in a cloud can be arbitrarily created, deleted, and appended,
and nodes can be upgraded, replaced and added in the file
system, the file chunks are not distributed as uniformly as
possible among the nodes. Load balance among storage
nodes is a critical function in clouds. In a load-balanced
cloud, the resources can be well utilized and provisioned,
maximizing the performance of Map Reduce-based
applications. State-of-the-art distributed file systems (e.g.,
Google GFS[7],[8] and Hadoop HDFS [3]) in clouds rely on
central nodes to manage the metadata information of the file

systems and to balance the loads of storage nodes based on
that metadata. The centralized approach simplifies the
design and implementation of a distributed file system.
However, recent experience concludes that when the number
of storage nodes, the number of files and the number of
accesses to files increase linearly, the central nodes (e.g., the
master in Google GFS) become a performance bottleneck, as
they are unable to accommodate a large number of file
accesses due to clients and Map Reduce applications. In this
paper, we are interested in studying the load rebalancing
problem in distributed file systems specialized for large-
scale, dynamic and data-intensive clouds. (The terms
“rebalance” and “balance” are interchangeable in this paper.)
Such a large-scale cloud has hundreds or thousands of nodes
(and may reach tens of thousands in the future).

Our objective is to allocate the chunks of files as uniformly
as possible among the nodes such that no node manages an
excessive number of chunks. Additionally, we aim to reduce
network traffic (or movement cost) caused by rebalancing
the loads of nodes as much as possible to maximize the
network bandwidth available to normal applications.
Moreover, as failure is the norm, nodes are newly added to
sustain the overall system performance, resulting in the
heterogeneity of nodes. Exploiting capable nodes to improve
the system performance is, thus, demanded. Specifically, in
this study, we suggest offloading the load rebalancing task to
storage nodes by having the storage nodes balance their
loads spontaneously. This eliminates the dependence on
central nodes.

 A. Virtualization:
Virtualization is the most profound change that PCs and
servers have experienced, said Simon Crosby, chief
technology officer for Citrix Systems’ Data Center and
Cloud Division [9]. “IT departments have long been at the

Paper ID: SUB14546 1103

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

mercy of the technical demands of legacy applications”,
explained Chris Van Dyke, [10] Microsoft’s chief
technology strategist for the oil and gas industry. “Now,
rather than having to maintain older operating systems
because of the needs of a legacy application, IT departments
can take advantage of the performance and security gains in
a new OS (in one virtual machine) while supporting legacy
applications in another. Also, the process of deploying
applications becomes simpler, because applications can be
virtualized and deployed as a single virtual machine”.
[14]Virtualization technology lets a single PC or server
simultaneously run multiple operating systems or multiple
sessions of a single OS. This lets users put numerous
applications even those that run on different operating
systems on a single PC or server instead of having to host
them on separate machines as in the past. The approach is
thus becoming a common way for businesses and
individuals to optimize their hardware usage by maximizing
the number and kinds of jobs a single CPU can handle.[13].

B. Hyperviser: IaaS software is low-level code that runs
independent of an operating system called a hypervisor , and
isresponsible for taking inventory of hardware resources and
allocating resources based on demand.[12]

C. Private Cloud: The cloud infrastructure is operated
solely for an organization. It may be managed by the
organization or a third party and may exist on premise or off
premise.

D. Parellel Data Processing: Particular tasks of processing
a job can be assigned to different types of virtual machines
which are automatically instantiated and terminated during
the job execution, parallel.

E. Distributed File System: Files are stored on different
storage resources, but appear to users as they are put on a
single location. A distributed file system should be
transparent, fault-tolerant and scalable.

Figure 1: The experimental environment setup

2. Literature Survey

Map Reduce [2] is a programming model and an associated
implementation for processing and generating large data
sets. A map function which is specified by user processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function which can merges all
intermediate values associated with the same intermediate

key. Most of the real world tasks are expressible in this
model. The map and reduce primitives present in Lisp and
many other functional languages. We learnt and realized that
most of our computations involved applying a map operation
to each logical “record” in our input in order to compute a
set of intermediate

key/value pairs, and applying a reduce operation to all the
values that shared the same key, in order that derived data
can combine appropriately. The functional model with user
specified map and reduce operations allows us to parallelize
large computations easily and to use re-execution as the
primary mechanism for fault tolerance.

The Google File System [3] is scalable distributed file
system for large distributed data-intensive applications.
While running on inexpensive commodity hardware it
provides fault tolerance and it delivers high aggregate
performance to a large number of clients. The largest cluster
to date provides hundreds of terabytes of storage across
millions of disks on over a millions of machines, and it is
concurrently accessed by thousands of clients. A GFS
cluster consists of a single master and multiple chunk
servers and is accessed by multiple clients.

This includes the namespace, access control information, the
current locations of chunks and the mapping from files to
chunks. It also controls system-wide activities such as chunk
lease management, garbage collection of orphaned chunks,
and chunk migration between the chunk servers. The master
can also communicate with each chunk server in HeartBeat
messages to give it instructions and collect its state.

DHT based P2P systems offer a distributed hash table
(DHT) abstraction for object storage and retrieval. Many
solutions have been proposed to tackle the load balancing
issue in DHT-based P2P systems [4].But however, many
solutions either ignore the reassign loads among nodes
without considering proximity relationships or,
heterogeneity nature of the system, or both. The goal is to
ensure fair load distribution over nodes proportional to their
capacities, and also to minimize the load-balancing cost by
transferring virtual servers between heavily loaded nodes
and lightly loaded nodes in a proximity-aware fashion.
There are two main advantages of a proximity-aware load
balancing scheme. First and foremost, from the system
perspective, a load balancing scheme bearing network
proximity in mind can reduce the bandwidth consumption
(e.g., bisection backbone bandwidth) dedicated to load
movement. Second, it can avoid transferring loads across
high latency wide area links, thereby enabling fast
convergence on the load balance and quick response to load
imbalance.

A distributed peer-to-peer applications need to determine the
node that stores a data item. The Chord [5] protocol solves
this challenging problem in decentralized manner. Chord can
provide support for just one operation: given a key, it maps
the key onto a node. Chord simplifies the design of peer-to-
peer systems and applications based on it by addressing
these difficult problems:

Paper ID: SUB14546 1104

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

a) Load balance: Chord acts as distributed hash function,
spreading keys evenly over the nodes; this provides a
degree of natural load balance.

b) Decentralization: Chord is fully distributed: no node is
more important than any other. This improves robustness
and as well makes Chord appropriate for loosely-
organized peer-to-peer applications.

c) Scalability: The cost of a Chord lookup grows as the log
of the number of nodes, so even very larger systems are
feasible. No parameter tuning is required to achieve this
scaling.

d) Availability: Chord automatically adjusts its internal
tables to reflect node failures as well as newly joined
nodes, ensuring that, the node responsible for a key can
always be found, barring major failures in the underlying
network. If the system is in a continuous state of change
this will be true.

e) Flexible naming: Chord places no constraints on the
structure of the keys it looks up: the Chord key-space is
flat. This application gives a large amount of flexibility in
how they map their own names to Chord keys.

A new framework, called Histogram-based Global Load
Balancing (HiGLOB) [6] to facilitate global load balancing
in structured P2P systems. Each node P in HiGLOB has two
key components. The first component is a histogram
manager that maintains a histogram that reflects a global
view of the distribution of the load in the system. It is used
to determine if a node is normally loaded, overloaded, or
under loaded. The second component of the system is a load
balancing manager that takes actions to redistribute the load
whenever a node becomes overloaded or under loaded. The
load-balancing manager may redistribute the load both
statically when a new node joins the system and dynamically
when an existing node in the system becomes overloaded or
under loaded. We introduce two techniques that reduce the
maintenance cost and reduce the cost of constructing
histogram. Constructing a histogram for a new node may be
expensive since it requires histogram information from all
neighbor nodes. Additionally, the histograms of the new
node’s neighbors also need to be updated since adding a new
node to a group of nodes changes the average load of that
group. To partition the system into non-overlapping groups
of nodes and maintain the average load of them in the
histogram at a node. The reducing of overhead of
maintaining and constructing histograms by the proposed
techniques are used.

3. Load Balancing Algorithm

In our projected algorithm, each chunk server would firstly
estimate whether the nodeis under loaded (light) or
overloaded (heavy) without global knowledge. A node is
said to be light if the number of chunks it hosts is smaller
than the threshold value. The load status sample of randomly
selected nodes is given below.

Figure 2: Load balancing

3.1 Load-Balanced State

If each one of the chunk server do not host not more than
‗Am‘ chunks. In our projected algorithm, each chunk server
node ‗I‘ firstly estimate whether it is under loaded(light) or
overloaded (heavy) exclusive of global knowledge. ‗ ‘ of
‗A‘ from ‗j‘ is used to relieve the load of ‗j‘ node ‗j‘ may
possibly still remain as the heaviest node in the system after
it has migrated its load to node ‗i‘. In such cases, the current
least-loaded node, say node‗I‘ departs and then rejoins the
system as a successor of ‗j‘. That is the new node ‗I‘
becomes node ‗j+1‘, and j‘s original successor ‗i‘ thus
becomes node ‗j + 2‘. Such a process repeats iteratively
until ‗j‘ is no longer the heaviest. Then, the same process is
executed to release the extra load on the next heaviest node
in the system. This process repeats until all the heavy nodes
in the system become light nodes. We will offer a rigorous
performance analysis for the effect of varying in Appendix
E. Specifically; we discuss the tradeoff between the value of
and the movement cost. A larger introduces more overhead
for message exchanges, but results in a smaller movement
cost.

Procedure 1 ADJUSTLOAD (Node Ni) fOn Tuple Insertg
1: Let L(Ni) = x 2 (Tm ; Tm +1].
2: Let Nj be the lighter loaded of Ni -1 and Ni +1.
3: if L(Nj) Tm _ 1 thenf DoNBRADJUSTg
4: Move tuples from Ni to Nj to equalize load.
5: ADJUSTLOAD(Nj)
6: ADJUSTLOAD(Ni)
7: else
8: Find the least-loaded node Nk.
9: if L(Nk) _ Tm +2then fDoREORDERg
10: Transfer all data from Nk to N = Nk _1.
11: Transfer data from Ni to Nk, s.t. L(Ni) = dx=2e and L(Nk
) =bx =2c.
12: ADJUSTLOAD (N)
13: fRename nodes appropriately after REORDER.g
14: end if
15: end if

Paper ID: SUB14546 1105

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4. Simulation Results

Figure: home page

Figure: client login pag

Figure: Client signup pag

Figure: Signup(registration) successfully done

Figure: regestred client or user login pag

Figure: client login in to the accout(say)

Figure: file uploading file

Paper ID: SUB14546 1106

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure: clint under processs

Figure: clinet deleted or removed by admin or server

Figure: file(s) after portioned or splited (say)

5. Conclusion

In this paper we concluded that in large-scale, dynamic and
distributed system having the drawback will be overcome by
load equalization algorithm. Our proposal strives to balance
the masses of nodes and scale back the demanded movement
price the maximum amount as potential, whereas taking
advantage of physical network vicinity and node no
uniformity. Leave space for vendors to boost and optimize a
completely unique load equalization algorithmic rule to
modify the load-rebalancing drawback in cloud has been
conferred during this paper. Best algorithmic rule is
commonly topology specific.

References

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters,” Proc. Sixth Symp.
Operating System Design and Implementation (OSDI
’04), pp. 137-150, Dec. 2004.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
Google File System,” Proc. 19th ACM Symp. Operating
Systems Principles (SOSP ’03), pp. 29-43, Oct. 2003.

[3] Hadoop Distributed File System,
http://hadoop.apache.org/ hdfs/, 2012.

[4] VMware, http://www.vmware.com/, 2012.
[5] Xen, http://www.xen.org/, 2012.
[6] Apache Hadoop, http://hadoop.apache.org/, 2012.
[7] Hadoop Distributed File System “Rebalancing Blocks,”

http://
developer.yahoo.com/hadoop/tutorial/module2.html#reb
alancing, 2012.

[8] K. McKusick and S. Quinlan, “GFS: Evolution on Fast-
Forward,” Comm. ACM, vol. 53, no. 3, pp. 42-49, Jan.
2010.

[9] HDFS Federation,http://hadoop.apache.org/
common/docs/ r0.23.0/hadoop-yarn/hadoop-yarn-
site/Federation.html, 2012.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger,
M.F. Kaashoek, F. Dabek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Protocol for
Internet Applications,” IEEE/ACM Trans. Networking,
vol. 11, no. 1, pp. 17-21, Feb. 2003.

[11] A. Rowstron and P. Druschel, “Pastry: Scalable,
Distributed Object Location and Routing for Large-
Scale Peer-to-Peer Systems,” Proc. IFIP/ACM Int’l
Conf. Distributed Systems Platforms Heidelberg, pp.
161-172, Nov. 2001.

Paper ID: SUB14546 1107

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P.
Vosshall, and W. Vogels, “Dynamo: Amazon’s Highly
Available Key-Value Store,” Proc. 21st ACM Symp.
Operating Systems Principles (SOSP ’07), pp. 205-220,
Oct. 2007.

[13] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica, “Load Balancing in Structured P2P Systems,”
Proc. Second Int’l Workshop Peer-to-Peer Systems
(IPTPS ’02), pp. 68-79, Feb. 2003.

[14] D. Karger and M. Ruhl, “Simple Efficient Load
Balancing Algorithms for Peer-to-Peer Systems,” Proc.
16th ACM Symp. Parallel Algorithms and Architectures
(SPAA ’04), pp. 36-43, June 2004.

[15] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online
Balancing of Range-Partitioned Data with Applications
to Peer-to-Peer Systems,” Proc. 13th Int’l Conf. Very
Large Data Bases (VLDB ’04), pp. 444-455, Sept. 2004.

[16] J.W. Byers, J. Considine, and M. Mitzenmacher,
“Simple Load Balancing for Distributed Hash Tables,”
Proc. First Int’l Workshop Peer-to-Peer Systems (IPTPS
’03), pp. 80-87, Feb. 2003.

[17] G.S. Manku, “Balanced Binary Trees for ID
Management and Load Balance in Distributed Hash
Tables,” Proc. 23rd ACM Symp. Principles Distributed
Computing (PODC ’04), pp. 197-205, July 2004.

[18] A. Bharambe, M. Agrawal, and S. Seshan, “Mercury:
Supporting Scalable Multi-Attribute Range Queries,”
Proc. ACM SIGCOMM ’04, pp. 353-366, Aug. 2004.

[19] Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load
Balancing for DHT-Based P2P Systems,” IEEE Trans.
Parallel and Distributed Systems, vol. 16, no. 4, pp.
349-361, Apr. 2005.

[20] H. Shen and C.-Z. Xu, “Locality-Aware and Churn-
Resilient Load Balancing Algorithms in Structured P2P
Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 18, no. 6, pp. 849-862, June 2007.

[21] Q.H. Vu, B.C. Ooi, M. Rinard, and K.-L. Tan,
“Histogram-Based Global Load Balancing in Structured
Peer-to-Peer Systems,” IEEE Trans. Knowledge Data
Eng., vol. 21, no. 4, pp. 595-608, Apr. 2009.

[22] H.-C. Hsiao, H. Liao, S.-S. Chen, and K.-C. Huang,
“Load Balance with Imperfect Information in Structured
Peer-to-Peer Systems,” IEEE Trans. Parallel Distributed
Systems, vol. 22, no. 4, pp. 634-649, Apr. 2011.

[23] M.R. Garey and D.S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co., 1979.

[24] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1
(SHA1),” RFC 3174, Sept. 2001.

[25] M. Raab and A. Steger, “Balls into Bins-A Simple and
Tight Analysis,” Proc. Second Int’l Workshop
Randomization and Approximation Techniques in
Computer Science, pp. 159-170, Oct. 1998.

[26] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-
Based Aggregation in Large Dynamic Networks,” ACM
Trans. Computer Systems, vol. 23, no. 3, pp. 219-252,
Aug. 2005.

[27] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.
Kermarrec, and M.V. Steen, “Gossip-Based Peer
Sampling,” ACM Trans. Computer Systems, vol. 25,
no. 3, Aug. 2007.

Paper ID: SUB14546 1108

http://creativecommons.org/licenses/by/4.0/�

