Integral Solutions of the Homogeneous Biquadratic Diophantine Equation with 6 Unknowns

\((x^3 - y^3)Z = (W^2 - P^2)R^2\)

Dr. P. Jayakumar¹, K. Sangeetha²

¹²Department of Mathematics, A.V.V.M Sri Pushpam College (Autonomous), Poondi, Thanjavur (District) – 613 503, Tamilnadu India

Abstract: The homogeneous biquadratic equation with 6 unknowns represented by \((x^3 - y^3)Z = (W^2 - P^2)R^2\) is analyzed for its non-zero distinct integer solutions. Employing the transformations and applying the method of factorization, five different patterns of non-zero distinct integer solutions to the above biquadratic equation are obtained. A few interesting relations between the solutions and special numbers namely Polygonal numbers and Pyramidal numbers are presented.

Keywords: Biquadratic equation with 6 unknowns, Homogeneous Biquadratic equation, integral solutions, Special numbers, A few interesting relations

2010 Mathematics Subject Classification: 11D09

1. Introduction

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular biquadratic Diophantine equations homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity [1-4]. In this context one may refer [5-8] for various problems on the biquadratic Diophantine equations come with four variables. However, often we across non-homogeneous biquadratic equations and as such one may require its integral solution in its most general form. It is towards this end this paper concerns with the problem of determining non-trivial integral solutions of the biquadratic equation with six unknowns given by

\((x^3 - y^3)Z = (W^2 - P^2)R^2\).

2. Method of Analysis

The equation under consideration is

\[(x^3 - y^3)Z = (W^2 - P^2)R^2\] \(\text{(1)}\)

Assuming the transformations

\[x = 4u + v, y = 4u - v, z = 2u, w = u v + 1, p = u v - 1\] \(\text{in (1) we get}\) \(\text{(2)}\)

\[v^2 + 48u^2 = R^2\] \(\text{(3)}\)

2.1 Pattern: 1

Let \(R (a, b) = a^2 + 48b^2\) \(\text{(4)}\)

Using (4) in (3) we get

\[v^2 + 48u^2 = (a^2 + 48b^2)^2\]

By method of factorization, we get

\[(v + i\sqrt{48} u) (v - i\sqrt{48} u) = (a + i\sqrt{48} b)^2 \ (a - i\sqrt{48} b)^2\] \(\text{(5)}\)

Equating positive and negative factors, we get

\[(v + i\sqrt{48} u) = (a + i\sqrt{48} b)^2\] \(\text{(6)}\)

\[(v - i\sqrt{48} u) = (a - i\sqrt{48} b)^2\] \(\text{(7)}\)

Equating real and imaginary parts, we get

\[v = a^2 - 48b^2\] \(\text{(8)}\)

\[u = 2ab\] \(\text{(9)}\)

Substitute (8) & (9) in (2) the integer solutions of (1) are found to be

\[x (a, b) = 8ab + a^2 - 48b^2\]

\[y (a, b) = 8ab - a^2 + 48b^2\]

\[z (a, b) = 4ab\]

\[w (a, b) = 2a^3 b - 96ab^3 + 1\]

\[p (a, b) = 2a^3 b - 96ab^3 - 1\]

\[R (a, b) = a^2 + 48b^2\]

Properties:

1. \[x (a, 1) + y (a, 1) + z(a,1) - 6g_n + 4\] Nasty number
2. \[P (1, b) + y (1, b) - 18Pr_b - 8g_n\] Nasty number
3. \[x (a, 2) - 2 T_{3,a} \equiv 3 (\text{mod 15})\]
4. \[x(a, 1) - y(a, 1) - 2g_n \equiv 0 (\text{mod 2})\]
5. \[w (a, 1) - y(a, 1) - 50g_n - 2T_{3,a} \equiv -3 (\text{mod 44})\]
6. \[\frac{1}{3} [x (a, b) - y(a, b) + R (a, b)] = \text{Difference between two perfect squares}\]
7. \[x (n(n+1), n+2) + y (n(n+1), n+2) = 96P^2\]

2.2 Pattern: 2

Rewrite (3) as \(v^2 + 48u^2 = R^2 + 1\) \(\text{(10)}\)

Write 1 as \(1 = \frac{(1+i\sqrt{48})(1-i\sqrt{48})}{49}\) \(\text{(11)}\)
In (10) write 1 as factors, we get
\[(v + i\sqrt{48} u) = (a + i\sqrt{48} b)^2 \frac{(1+i\sqrt{48})}{7} \] (12)

Equating real and imaginary parts

\[v = \frac{1}{7}(a^2 - 96ab - 48b^2) \] (13)

\[u = \frac{1}{7}(a^2 + 2ab - 48b^2) \] (14)

As our interest is on finding integer solutions, it is seen that the values of \(u \) and \(v \) are integers for suitable choice of the parameters \(a \) and \(b \).

Putting \(a = 7A \) and \(b = 7B \) in (13) & (14), we get
\[v = (7A^2 - 672AB - 336B^2) \] (15)
\[u = (7A^2 + 14AB - 336B^2) \] (16)

Substituting (15) & (16) in (2) the integer solutions of (1) are found to be

\[x(A, B) = 35A^2 - 616AB - 1680B^2 \]
\[y(A, B) = 21A^2 + 728AB - 1008B^2 \]
\[z(A, B) = 14A^2 + 28AB - 672B^2 \]
\[w(A, B) = 49A^4 - 4606A^3B - 14112A^2B^2 + 22108AB^3 + 112896B^4 + 1 \]
\[P(A, B) = 49A^4 - 4606A^3B - 14112A^2B^2 + 22108AB^3 + 112896B^4 - 1 \]

Properties:
1. \(x(A, 1) - T_{72A} \equiv -66 (mod 582) \)
2. \(5z(n + 1, n + 2) \equiv 7 (mod 60) \)
3. \(z(A, 1) + R(A, 1) + P(A, 1) = 73027 (mod 129592) \)

2.4: Pattern: 4

Rewrite (10) as \(R^2 - 48u^2 = v^2 \)

\[R = 7a^2 + 96ab + 336b^2 \]
\[u = a^2 + 14ab + 48b^2 \] (26)
2.5: Pattern: 5

In (21) rewrite 1 as

\[1 = (97 + 14\sqrt{48}) (97 - 14\sqrt{48}) \quad (27) \]

Substitute (27) in (21), we get

\[R^2 - 48u^2 = (a^2 - 48 b^2)^2 (97 + 14\sqrt{48}) \]

By method of factorization and equating rational and irrational parts, we get

\[R = 97a^2 + 1344ab + 4656b^2 \]

and therefore the integer solutions of (1) becomes

\[x(a, b) = 57a^2 + 776ab + 2640b^2 \]
\[y(a, b) = 55a^2 + 776ab + 2736b^2 \]
\[z(a, b) = 28a^2 + 388ab + 1344b^2 \]
\[w(a, b) = 14a^4 + 194a^3b - 9312ab^2 - 32256b^4 + 1 \]
\[p(a, b) = 14a^4 + 194a^3b - 9312ab^2 - 32256b^4 - 1 \]
\[R(a, b) = 97a^2 + 1344ab + 4656b^2 \]

Properties:

1. \(x(a, 1) - y(a, 1) + 4T_{4,a} \) Nasty number
2. \(\frac{10}{103} [x(a, a) - y(a, a) - z(a, a)] \) Nasty number
3. \(R(a, 1) - 1947_{3,a} \equiv 915 \text{ mod } 1247 \)
4. \(3[w(a, 1) - P(a, 1)] \) Nasty number

3. Conclusion

To conclude, one may search for other patterns of solutions and their corresponding properties.

References

Author Profile

P. Jayakumar received the B. Sc, M.Sc degrees in Mathematics from University of Madras in 1980 and 1983 and the M.Phil.,Ph.D degrees in Mathematics from Bharathidasan University, Thiruchirappalli in 1988 and 2010.He is now working as Associate Professor of Mathematics, A.V.V.M Sri Pushpam College Poondu,(Autonomous),Thanjavur (District) – 613 503, Tamil Nadu, India.

K. Sangeetha received the B. Sc, M.Sc degrees in Mathematics from Bharathidasan University, Thiruchirappalli in 2003 and 2006 and the M.Phil degrees in Mathematics from Algappa University, Karaikudi in 2008.