
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 12, December 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Survey on Algorithms Predicting Performance of 
Keyword Queries  

 
Snehal Borole 

 
Computer Engineering Department, PES Modern College of Engineering, Pune, Maharashtra, India 

 
Abstract: Querying using keywords is easily the most widely used form of querying today. Data in database can be easily access with 
the help of Keyword queries but it may be suffer with low ranking i.e., low precision and/or recall. Responses to keyword searches are 
often imprecise. It would be beneficial to identify queries having low ranking quality to improve result. Generally in existing systems 
result is retrieved based on user keyword query, but it may happen that due to low ranking the expected result is discarded. User 
remains unsatisfied on retrieved result. Hence it is necessary to study different algorithms which help to predict the difficulty level of the 
keyword query so that alternate query can be used to improve results. This paper provides different algorithms and their comparative 
study for prediction of difficult keyword queries. 
 
Keywords: Query performance, query effectiveness, keyword query 
 
1. Introduction 
 
Predicting difficulty of keyword query plays an important 
role in information retrieval. Mostly User issue keyword 
query, in response keyword query interface returns a ranked 
list of answers. If returned answer is not satisfied then 
rephrase or modify the keyword query in order to improve 
effectiveness of the search. In recent years, several 
techniques are proposed for predicting the quality of the 
keyword queries like clarity score [2], probabilistic retrieval 
models for semi-structured data [9], IR style algorithm [7] 
etc.  
 
1.1 Keyword Queries 
 
Querying using keywords is easily the most widely used form 
of querying today. Data in database can be easily access with 
the help of Keyword queries. Query performance prediction 
is useful in a variety of information retrieval (IR) areas such 
as improving retrieval consistency, query refinement, and 
distributed IR. The keyword query is work with unstructured 
dataset, semi structure dataset as well as structured dataset. 
 
 Keyword query does not consider structure of a database. In 
SQL, we specify the schema name for query term but in 
keyword queries user does not provide desired schema for 
query term. For instance, query Q1: Godfather on the IMDB 
database (http://www.imdb.com) does not specify if the user 
is interested in movies whose title is Godfather or movies 
distributed by the Godfather Company. Thus, a Keyword 
Query Interface must find the desired attributes associated 
with each term in the query. Second, the schema of the output 
is not specified, i.e., users do not give enough information to 
single out exactly their desired entities. For example, Q1 may 
return movies or actors or producers.  
 
The main problem with keyword queries are they can suffer 
from the low ranking quality. Low ranking quality refers to 
the low recall or /and low precision. 
 
 
 

1.2 Hard Keyword Queries 
 
The queries which are difficult to answer correctly are called 
hard keyword queries. The researchers propose 3 sources of 
difficulty for answering a query over a database [1] as 
follows: 
 
1) More entities matches the term in query: 
If more entities match the terms in a query, the query is less 
specific and it is harder to answer properly. For example: 
there are more one person named JOEL in the IMDB 
database and user submits query Q1: JOEL, the keyword 
query interface must resolve desire JOEL that satisfy user’s 
information need. If the more number of people in IMDB is 
JOEL then it will be hard to predict the correct answer. As 
oppose to Q1, Q2: KIM matches the smaller number of 
people in IMDB, so it is easier for keyword query interface 
to return relevant answer.  
 
2) Attribute level ambiguity 
Each attribute explains a different feature of an entity and 
defines the context of terms in attribute values of it. If a 
query matches different attributes in its candidate answers, it 
will have a more diverse set of potential answers in database, 
and hence it has higher attribute level ambiguity. For 
example: Q3: GODFATHER, contains in title and the 
distributor of IMDB dataset. Keyword query interface must 
find out the desired attribute for GODFATHER to find 
correct answer. Answer for the query Q4: SPEED does not 
match with any instance of attribute distributor, so keyword 
query interface easily predict the relevant answer for this 
query.  
 
3) Entity level ambiguity 
Each entity set contains the information about a different type 
of entities and defines another level of context (in addition to 
the context defined by attributes) for terms. Hence, if a query 
matches entities from more entity sets, it will have higher 
entity set level ambiguity. 
 
For example: IMDB has two entity sets mainly one is 
‘Movie’, contains the information about movie and other is 

Paper ID: SUB14538 886

http://creativecommons.org/licenses/by/4.0/�


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 12, December 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

‘Person’, contains the information about people who making 
movies. Consider query Q5: ‘MARRIED’, the both Movie 
and Person contains MARRIED word, so the query become 
hard to find relevant as keyword query interface does not 
know whether user is interested in people who are 
MARRIED or the movies containing MARRIED word. In 
case of query Q6: COMEDY SUSPENSE is only match with 
the entities of Movie entity set. So it will be less difficult to 
keyword query interface to find relevant answer as compared 
to query Q5. 
 
1.3 Ranking Robustness 
 
Ranking robustness in noisy data retrieval refers to a property 
of a ranked list of documents that indicates how stable the 
ranking is in the presence of noise brought by the recognition 
process. Ranking robustness is calculated by comparing the 
ranking list from the corrupted dataset to the corresponding 
ranking list of the original dataset using same query and the 
ranking function. There many methods using ranking 
robustness principle to calculate the difficulty of query is 
clarity score [2], SR algorithm [1].  
 

 
Figure 1: Robustness Score Calculation 

 
2. Related Work 
 
Prediction of query performance has long been of interest in 
information retrieval. It is invested under a different names 
query difficulty, query ambiguity and sometimes hard query. 
 
Clarity score method [2] is an attempt to specify the query 
ambiguity. It uses unigram distribution over terms to estimate 
the query language model and calculates the threshold value 
by performing kernel density estimation with automatically 
setting of the degree of smoothing. Kernel density estimation 
is a smoothing technique that allows us to estimate the 
underlying probability density by summing Gaussians 
centered at each observed data point. The value of threshold 
is selected heuristically so that the 80% of probability density 
is below threshold. This method has used TREC dataset for 
evaluating and predicting query ambiguity. Several 
successors propose methods to improve the efficiency and 
effectiveness of clarity score [6], [8]. 
 
The robustness algorithm [3] works in following ways, first, 
perform retrieval with query Q and retrieval function G. Then 
generate J simulated documents using the document models 
of the top J documents retrieved and rank the simulated 
documents with the same query and retrieval function. The 
similarity between the two ranked lists is computed using the 

Spearman rank correlation coefficient. Repeat this K times 
and the average of the Spearman correlation coefficient is the 
robustness score. This method is also known as Unstructured 
Robustness Method. The analysis reveals that the robustness 
score predicts the value of average precision better than the 
clarity score. 
The robustness score formula is given by: 

 

 
 
Where, Q is the query and a document collection of M 
documents C = (D1, D2, …, DM), G is the retrieval function, 
and X is the noisy version of database. The is a sample 
independently drawn from ƒx(T) where 
 T M(|A| x V). 
 
For the web search engine, researcher has invented Weighted 
Information Gain (WIG) [5] which gives accuracy in 
predicting query difficulty. It measures the divergence 
between the mean retrieval score of top-ranked documents 
and that of the entire corpus. Researcher focus on two types 
of queries in web engine: the content based and named-page 
finding queries. 
 
Researchers also proposed Normalized query commitment 
(NQC) [6] that predicts the query performance based on 
estimating the potential amount of query drift in the list of 
top-retrieved documents using the standard deviation of their 
retrieval scores. The NQC, WIG and URM are the post-
retrieval query prediction techniques over the unstructured 
database. 
 
IR style algorithm [7] is proposed for keyword search over 
relational databases. Keyword query is a simply list is 
keywords and does not need to provide any schema, relation 
or attribute name. The answer to such a query consists of 
rank of “tuple trees”, which includes tuples from multiple 
relations that are combined via joins. The IR engine stores an 
IR index that is inverted index of keyword that appears in 
database and the list of occurrences of that keyword. Each 
occurrences of keyword is recorded as tuple attribute pair. 
The ranking function is introduced to rank the tuple tree that 
leverages and extends ability to provide keyword search on 
individual text attributes and rank tuples accordingly. IR style 
algorithm is hybrid algorithm which combines global 
pipelined and sparse algorithms. 
 
The sparse algorithm executes one CN (Candidate Network) 
at a time and updates the current top-k results; The CN is the 
non-empty tuple sets from the IR Engine. The global pipeline 
algorithm adopts a more aggressive optimization: it does not 
execute a CN to its full; instead, at each iteration, it (a) first 
selects the most promising CN, i.e., the CN with the highest 
upper bound score; (b) admits the next unseen tuple from one 
of the CN’s non-free tuple sets and join the new tuple with all 
the already seen tuples in all the other non-free tuple sets. 
 

Paper ID: SUB14538 887

http://creativecommons.org/licenses/by/4.0/�


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 12, December 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

The probabilistic retrieval models for semi-structured data 
(PRMS) [9] focused on infers structural information 
automatically from keyword queries and incorporates this 
into a retrieval model. It employs a hierarchical language 
model approach to search over structured data. It computes 
the language model of each attribute value smoothed by the 
language model of its attribute. It assigns each attributes a 
query keyword specific weight, which specifies its 
contribution in the ranking score.  
 
SR algorithm [1] is Structured Robustness algorithm which 
uses robustness score for measuring difficulty of a query. It 
uses the INEX dataset and the SEMSEARCH dataset for the 
evaluation of a query. In SR algorithm first calculate the top 
k ranked list and the updated global statistics that are stored 
in Metadata from the original database. It also uses the 
inverted index to calculate top k ranked list. Then it generates 
the noise in the database on the fly during the query 
processing. It corrupts only the top k entities which are 
already returned by the ranking module. SR algorithm finds 
the corrupted result and updated global statistics over the 
corrupted database and passes those to the ranking module to 
compute the corrupted ranking list. The each attribute value 
is corrupted by a combination of three corruption level: on 
the value itself, its attribute and its entity set. 
 
Let  be the random variable that represents the frequency 
of term  in attribute . Probability mass function 

computes the probability of  to appear  times 
in . Similarly, is the random variable that denotes the 
frequency of term  in entity set  and probability mass 
function  computes the probability of  to appear 

 times in .  
 
The above terms are calculated using Poisson distribution as 
follows, 

 

 

 
The noise generation module for SR algorithm is given by, 

 
 
Where 0 <= γA + γT + γS <=1 
 
If term w appears in attribute value A, we use only the first 
term in above Equation to model the frequency of w in the 
noisy version of database. Otherwise, we use the second or 
third terms if w belongs to T and S, respectively. 
 The SR algorithm uses the Spearman rank Correlation and 
Pearson’s Correlation to compute the value of similarity 
function. It ranges from -1 to 1. A value close to 1 means a 
perfect positive correlation between two ranking and a value 
close to -1, a perfect negative correlation. If the two ranking 

have almost no correlation, the correlation coefficient will be 
close to zero.  
Spearman rank correlation formula 
 
SR(Q, g, DB , XDB  
 

 
Where, Q = query  
g is the retrieval function,  
XDB is the noisy version of database.  
 is sample independently drawn from ƒXDB where 

 M(|A| x V) 
 
The result shows that SR algorithm is more efficient than the 
other algorithms for predicting difficult queries and resulting 
ranked top k list [1]. 
 

Table 1: Spearman’s Correlation of Average Precision 
against Each Metric when K=10 

K = 10 

Method SR WIG CR URM 

INEX 0.303 0.242 0.199 0.196 

SemSearch 0.519 0.27 0.182 -0.012 

 
Table 2: Spearman’s Correlation of Average Precision 

against Each Metric when K=20 
K = 20 
Method SR WIG CR URM 
INEX 0.475 0.218 0.202 0.27 
SemSearch 0.576 0.253 0.179 0.074 

 
 Table 1 and Table 2 shows that the Spearman’s Correlation 
scores for SR algorithm is more efficient than weighted 
Information Gain[5], Clarity Score[2], and Unstructured 
Robustness Method [3]. 
 
The drawback of SR algorithm is to spend large portion of 
the robustness calculation time on the loop that re-ranks the 
corrupted result. So the researcher invented better approach 
by modifying this algorithm named as Approximation 
algorithm. The approximation algorithm improves efficiency 
of SR algorithm. It is a combination of QAO-Approx (Query 
specific Attribute values Only Approximation and SGS-
Approx (Static Global Stat Approximation.  
 
QAO-Approx: In SR algorithm, the attribute values that do 
not contain any query term still get corrupted because their 
attributes or entity sets may contain some query keywords. 
This drawback of SR algorithm is solved in QAO-Approx. 
QAO-Approx is based on the observation that the noise in the 
attribute values that contain query terms dominates the 
corruption effect. So time spend on corruption can be 
decreased if only the attribute values are corrupted that 
contain the query terms. 
 
SGS-Approx: Extracting top k entities from database 
constitute a very small portion of the database. Thus the 

Paper ID: SUB14538 888

http://creativecommons.org/licenses/by/4.0/�


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 12, December 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

global statistics largely remain unchanged or change very 
little. Therefore in SGS-Approx, the global statistics remains 
as it is. Just combining the corruption and ranking module 
together, re-ranking is done on the fly during corruption. The 
result shows the combined algorithm delivers the best 
balance of improvement in efficiency and reduction in 
effectiveness for both INEX and SEMSEARCH datasets. 
 
3. Conclusion 
 
This paper is focuses on main problem of retrieving 
appropriate top k results for a keyword query and predicting 
the difficulty level that is the keyword query is easy or hard. 
The described algorithms are the various approaches and the 
Approximation of Structured Robustness Algorithm is the 
best approach as its performance and accuracy is better than 
other approaches.  
 
References 

 
[1] Shiwen Cheng, Arash Termehchy, and Vagelis Hristidis, 

Efficient Prediction of Difficult Keyword Queries over 
Databases, IEEE transactions on knowledge and data 
engineering, Vol. 26, no. 6, June 2014. 

[2] S. C. Townsend, Y. Zhou, and B. Croft, “Predicting query 
performance,” in Proc. SIGIR, Tampere, Finland, 2002.  

[3] Y. Zhou and B. Croft, “Ranking robustness: A novel 
framework to predict query performance,” in Proc. 15th 
ACM Int. CIKM, Geneva, Switzerland, 2006. 

[4] A. Trotman and Q. Wang, “Overview of the INEX 2010 
data centric track,” in 9th Int. Workshop INEX, Vugh, 
The Netherlands, 2010. 

[5] Y. Zhou and W. B. Croft, “Query performance prediction 
in web search environments,” in Proc. 30th Annu. Int. 
ACM SIGIR, New York, NY, USA, 2007 

[6] A. Shtok, O. Kurland, and D. Carmel, “Predicting query 
performance by query-drift estimation,” ACM 
Transaction on Information System, Vol. 30, Issue 2,May 
2012. 

[7] V. Hristidis, L. Gravano, and Y. Papakonstantinou, 
“Efficient IRstyle keyword search over relational 
databases,” in Proc. 29th VLDB Conf., Berlin, Germany, 
2003. 

[8] K. Collins-Thompson and P. N. Bennett, “Predicting 
query performance via classification,” Springer, Volume 
5993, 2010. 

[9] Jinyoung Kim, Xiaobing Xue, W. Bruce Croft, A 
Probabilistic Retrieval Model for Semi-structured Data, 
Springer Transaction on Advances in Information 
Retrieval, Volume 5478, 2009. 

 
Author Profile 
 

Snehal Borole received a Bachelor of Engineering 
degree in Computer. Now pursuing Master’s of 
Engineering in Computer from University of Pune. Her 
interests are in database and data mining field.  
 

Paper ID: SUB14538 889

http://creativecommons.org/licenses/by/4.0/�
http://link.springer.com/search?facet-author=%22Jinyoung+Kim%22�
http://link.springer.com/search?facet-author=%22Xiaobing+Xue%22�
http://link.springer.com/search?facet-author=%22W.+Bruce+Croft%22�



